File size: 1,279 Bytes
9ad96fc
 
 
 
 
 
 
 
 
 
ae2a8fa
9ad96fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a14458
9ad96fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#Hello! It seems like you want to import the Streamlit library in Python. Streamlit is a powerful open-source framework used for building web applications with interactive data visualizations and machine learning models. To import Streamlit, you'll need to ensure that you have it installed in your Python environment.
#Once you have Streamlit installed, you can import it into your Python script using the import statement,

import streamlit as st


from langchain.llms import HuggingFaceHub

#Function to return the response
def load_answer(question):
    model_name = "google/flan-t5-xxl"
    # model_name = "starmpcc/Asclepius-13B"

    model_kwargs = {
        "temperature": 0.9,
        "max_length": 1024
    }

    llm = HuggingFaceHub(
        repo_id = model_name,
        model_kwargs = model_kwargs
    )
    answer=llm(question)
    return answer


#App UI starts here
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
st.header("Simple QnA")

#Gets the user input
def get_text():
    input_text = st.text_input("You: ", key="input")
    return input_text


user_input=get_text()
response = load_answer(user_input)

submit = st.button('Generate')  

#If generate button is clicked
if submit:

    st.subheader("Answer:")

    st.write(response)