|
import inspect |
|
import os |
|
from typing import Union |
|
|
|
import PIL |
|
import numpy as np |
|
import torch |
|
import tqdm |
|
from accelerate import load_checkpoint_in_model |
|
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion.safety_checker import \ |
|
StableDiffusionSafetyChecker |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from huggingface_hub import snapshot_download |
|
from transformers import CLIPImageProcessor |
|
|
|
from model.attn_processor import SkipAttnProcessor |
|
from model.utils import get_trainable_module, init_adapter |
|
from utils import (compute_vae_encodings, numpy_to_pil, prepare_image, |
|
prepare_mask_image, resize_and_crop, resize_and_padding) |
|
|
|
|
|
class CatVTONPipeline: |
|
def __init__( |
|
self, |
|
base_ckpt, |
|
attn_ckpt, |
|
attn_ckpt_version="mix", |
|
weight_dtype=torch.float32, |
|
device='cuda', |
|
compile=False, |
|
skip_safety_check=False, |
|
use_tf32=True, |
|
): |
|
self.device = device |
|
self.weight_dtype = weight_dtype |
|
self.skip_safety_check = skip_safety_check |
|
|
|
self.noise_scheduler = DDIMScheduler.from_pretrained(base_ckpt, subfolder="scheduler") |
|
self.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=weight_dtype) |
|
if not skip_safety_check: |
|
self.feature_extractor = CLIPImageProcessor.from_pretrained(base_ckpt, subfolder="feature_extractor") |
|
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(base_ckpt, subfolder="safety_checker").to(device, dtype=weight_dtype) |
|
self.unet = UNet2DConditionModel.from_pretrained(base_ckpt, subfolder="unet").to(device, dtype=weight_dtype) |
|
init_adapter(self.unet, cross_attn_cls=SkipAttnProcessor) |
|
self.attn_modules = get_trainable_module(self.unet, "attention") |
|
self.auto_attn_ckpt_load(attn_ckpt, attn_ckpt_version) |
|
|
|
if compile: |
|
self.unet = torch.compile(self.unet) |
|
self.vae = torch.compile(self.vae, mode="reduce-overhead") |
|
|
|
|
|
if use_tf32: |
|
torch.set_float32_matmul_precision("high") |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
def auto_attn_ckpt_load(self, attn_ckpt, version): |
|
sub_folder = { |
|
"mix": "mix-48k-1024", |
|
"vitonhd": "vitonhd-16k-512", |
|
"dresscode": "dresscode-16k-512", |
|
}[version] |
|
if os.path.exists(attn_ckpt): |
|
load_checkpoint_in_model(self.attn_modules, os.path.join(attn_ckpt, sub_folder, 'attention')) |
|
else: |
|
repo_path = snapshot_download(repo_id=attn_ckpt) |
|
print(f"Downloaded {attn_ckpt} to {repo_path}") |
|
load_checkpoint_in_model(self.attn_modules, os.path.join(repo_path, sub_folder, 'attention')) |
|
|
|
def run_safety_checker(self, image): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
safety_checker_input = self.feature_extractor(image, return_tensors="pt").to(self.device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(self.weight_dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
def check_inputs(self, image, condition_image, mask, width, height): |
|
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(mask, torch.Tensor): |
|
return image, condition_image, mask |
|
assert image.size == mask.size, "Image and mask must have the same size" |
|
image = resize_and_crop(image, (width, height)) |
|
mask = resize_and_crop(mask, (width, height)) |
|
condition_image = resize_and_padding(condition_image, (width, height)) |
|
return image, condition_image, mask |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.noise_scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.noise_scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Union[PIL.Image.Image, torch.Tensor], |
|
condition_image: Union[PIL.Image.Image, torch.Tensor], |
|
mask: Union[PIL.Image.Image, torch.Tensor], |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 2.5, |
|
height: int = 1024, |
|
width: int = 768, |
|
generator=None, |
|
eta=1.0, |
|
**kwargs |
|
): |
|
concat_dim = -2 |
|
|
|
image, condition_image, mask = self.check_inputs(image, condition_image, mask, width, height) |
|
image = prepare_image(image).to(self.device, dtype=self.weight_dtype) |
|
condition_image = prepare_image(condition_image).to(self.device, dtype=self.weight_dtype) |
|
mask = prepare_mask_image(mask).to(self.device, dtype=self.weight_dtype) |
|
|
|
masked_image = image * (mask < 0.5) |
|
|
|
masked_latent = compute_vae_encodings(masked_image, self.vae) |
|
condition_latent = compute_vae_encodings(condition_image, self.vae) |
|
mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest") |
|
del image, mask, condition_image |
|
|
|
masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim) |
|
mask_latent_concat = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim) |
|
|
|
latents = randn_tensor( |
|
masked_latent_concat.shape, |
|
generator=generator, |
|
device=masked_latent_concat.device, |
|
dtype=self.weight_dtype, |
|
) |
|
|
|
self.noise_scheduler.set_timesteps(num_inference_steps, device=self.device) |
|
timesteps = self.noise_scheduler.timesteps |
|
latents = latents * self.noise_scheduler.init_noise_sigma |
|
|
|
if do_classifier_free_guidance := (guidance_scale > 1.0): |
|
masked_latent_concat = torch.cat( |
|
[ |
|
torch.cat([masked_latent, torch.zeros_like(condition_latent)], dim=concat_dim), |
|
masked_latent_concat, |
|
] |
|
) |
|
mask_latent_concat = torch.cat([mask_latent_concat] * 2) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
num_warmup_steps = (len(timesteps) - num_inference_steps * self.noise_scheduler.order) |
|
with tqdm.tqdm(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
non_inpainting_latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents) |
|
non_inpainting_latent_model_input = self.noise_scheduler.scale_model_input(non_inpainting_latent_model_input, t) |
|
|
|
inpainting_latent_model_input = torch.cat([non_inpainting_latent_model_input, mask_latent_concat, masked_latent_concat], dim=1) |
|
|
|
noise_pred= self.unet( |
|
inpainting_latent_model_input, |
|
t.to(self.device), |
|
encoder_hidden_states=None, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
latents = self.noise_scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs |
|
).prev_sample |
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps |
|
and (i + 1) % self.noise_scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
|
|
|
|
latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0] |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents.to(self.device, dtype=self.weight_dtype)).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
image = numpy_to_pil(image) |
|
|
|
|
|
if not self.skip_safety_check: |
|
current_script_directory = os.path.dirname(os.path.realpath(__file__)) |
|
nsfw_image = os.path.join(os.path.dirname(current_script_directory), 'resource', 'img', 'NSFW.jpg') |
|
nsfw_image = PIL.Image.open(nsfw_image).resize(image[0].size) |
|
image_np = np.array(image) |
|
_, has_nsfw_concept = self.run_safety_checker(image=image_np) |
|
for i, not_safe in enumerate(has_nsfw_concept): |
|
if not_safe: |
|
image[i] = nsfw_image |
|
return image |
|
|