|
from datasets import load_dataset |
|
from sentence_transformers import SentenceTransformer, CrossEncoder, util |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
|
|
embedding_path = "abokbot/wikipedia-embedding" |
|
|
|
def load_embedding(): |
|
print("Loading embedding...") |
|
path = hf_hub_download(repo_id="abokbot/wikipedia-embedding", filename="wikipedia_en_embedding.pt") |
|
wikipedia_embedding = torch.load(path, map_location=torch.device('cpu')) |
|
print("Embedding loaded!") |
|
return wikipedia_embedding |
|
|
|
wikipedia_embedding = load_embedding() |
|
|
|
def load_encoders(): |
|
print("Loading encoders...") |
|
bi_encoder = SentenceTransformer('msmarco-MiniLM-L-6-v3') |
|
bi_encoder.max_seq_length = 512 |
|
cross_encoder = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2') |
|
print("Encoders loaded!") |
|
return bi_encoder, cross_encoder |
|
|
|
bi_encoder, cross_encoder = load_encoders() |
|
|
|
def load_wikipedia_dataset(): |
|
print("Loading wikipedia dataset...") |
|
dataset = load_dataset("abokbot/wikipedia-first-paragraph")["train"] |
|
print("Dataset loaded!") |
|
return dataset |
|
|
|
dataset = load_wikipedia_dataset() |
|
|
|
def search(query): |
|
print("Input question:", query) |
|
|
|
|
|
print("Semantic Search") |
|
|
|
top_k = 32 |
|
question_embedding = bi_encoder.encode(query, convert_to_tensor=True) |
|
hits = util.semantic_search(question_embedding, wikipedia_embedding, top_k=top_k) |
|
hits = hits[0] |
|
|
|
|
|
print("Re-Ranking") |
|
cross_inp = [[query, dataset[hit['corpus_id']]["text"]] for hit in hits] |
|
cross_scores = cross_encoder.predict(cross_inp) |
|
|
|
|
|
for idx in range(len(cross_scores)): |
|
hits[idx]['cross-score'] = cross_scores[idx] |
|
|
|
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) |
|
|
|
print("\n-------------------------\n") |
|
print("Top-3 Cross-Encoder Re-ranker hits") |
|
results = [] |
|
for hit in hits[:3]: |
|
results.append( |
|
{ |
|
"score": round(hit['cross-score'], 3), |
|
"title": dataset[hit['corpus_id']]["title"], |
|
"abstract": dataset[hit['corpus_id']]["text"].replace("\n", " "), |
|
"link": dataset[hit['corpus_id']]["url"] |
|
} |
|
) |
|
return results |