Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import transformers
|
3 |
+
from torch import bfloat16
|
4 |
+
# from dotenv import load_dotenv # if you wanted to adapt this for a repo that uses auth
|
5 |
+
from threading import Thread
|
6 |
+
|
7 |
+
|
8 |
+
#HF_AUTH = os.getenv('HF_AUTH')
|
9 |
+
model_id = "stabilityai/StableBeluga-7B"
|
10 |
+
|
11 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
12 |
+
load_in_4bit=True,
|
13 |
+
bnb_4bit_quant_type='nf4',
|
14 |
+
bnb_4bit_use_double_quant=True,
|
15 |
+
bnb_4bit_compute_dtype=bfloat16
|
16 |
+
)
|
17 |
+
model_config = transformers.AutoConfig.from_pretrained(
|
18 |
+
model_id,
|
19 |
+
#use_auth_token=HF_AUTH
|
20 |
+
)
|
21 |
+
|
22 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_id,
|
24 |
+
trust_remote_code=True,
|
25 |
+
config=model_config,
|
26 |
+
quantization_config=bnb_config,
|
27 |
+
device_map='auto',
|
28 |
+
#use_auth_token=HF_AUTH
|
29 |
+
)
|
30 |
+
|
31 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
32 |
+
model_id,
|
33 |
+
#use_auth_token=HF_AUTH
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def prompt_build(system_prompt, user_inp, hist):
|
38 |
+
prompt = f"""### System:\n{system_prompt}\n\n"""
|
39 |
+
|
40 |
+
for pair in hist:
|
41 |
+
prompt += f"""### User:\n{pair[0]}\n\n### Assistant:\n{pair[1]}\n\n"""
|
42 |
+
|
43 |
+
prompt += f"""### User:\n{user_inp}\n\n### Assistant:"""
|
44 |
+
return prompt
|
45 |
+
|
46 |
+
def chat(user_input, history, system_prompt):
|
47 |
+
|
48 |
+
prompt = prompt_build(system_prompt, user_input, history)
|
49 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
50 |
+
|
51 |
+
streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
52 |
+
|
53 |
+
generate_kwargs = dict(
|
54 |
+
model_inputs,
|
55 |
+
streamer=streamer,
|
56 |
+
max_new_tokens=2048,
|
57 |
+
do_sample=True,
|
58 |
+
top_p=0.95,
|
59 |
+
temperature=0.8,
|
60 |
+
top_k=50
|
61 |
+
)
|
62 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
63 |
+
t.start()
|
64 |
+
|
65 |
+
model_output = ""
|
66 |
+
for new_text in streamer:
|
67 |
+
model_output += new_text
|
68 |
+
yield model_output
|
69 |
+
return model_output
|
70 |
+
|
71 |
+
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
system_prompt = gr.Textbox("You are helpful AI.", label="System Prompt")
|
74 |
+
chatbot = gr.ChatInterface(fn=chat, additional_inputs=[system_prompt])
|
75 |
+
|
76 |
+
demo.queue().launch()
|