Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
import torchvision.transforms as T | |
from PIL import Image | |
from decord import VideoReader | |
from decord import cpu | |
from uniformer import uniformer_small | |
from kinetics_class_index import kinetics_classnames | |
from transforms import ( | |
GroupNormalize, GroupScale, GroupCenterCrop, | |
Stack, ToTorchFormatTensor | |
) | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
def get_index(num_frames, num_segments=16, dense_sample_rate=8): | |
sample_range = num_segments * dense_sample_rate | |
sample_pos = max(1, 1 + num_frames - sample_range) | |
t_stride = dense_sample_rate | |
start_idx = 0 if sample_pos == 1 else sample_pos // 2 | |
offsets = np.array([ | |
(idx * t_stride + start_idx) % | |
num_frames for idx in range(num_segments) | |
]) | |
return offsets + 1 | |
def load_video(video_path): | |
vr = VideoReader(video_path, ctx=cpu(0)) | |
num_frames = len(vr) | |
frame_indices = get_index(num_frames, 16, 16) | |
# transform | |
crop_size = 224 | |
scale_size = 256 | |
input_mean = [0.485, 0.456, 0.406] | |
input_std = [0.229, 0.224, 0.225] | |
transform = T.Compose([ | |
GroupScale(int(scale_size)), | |
GroupCenterCrop(crop_size), | |
Stack(), | |
ToTorchFormatTensor(), | |
GroupNormalize(input_mean, input_std) | |
]) | |
images_group = list() | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()) | |
images_group.append(img) | |
torch_imgs = transform(images_group) | |
# The model expects inputs of shape: B x C x T x H x W | |
TC, H, W = torch_imgs.shape | |
torch_imgs = torch_imgs.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4) | |
return torch_imgs | |
def inference(video): | |
vid = load_video(video) | |
prediction = model(vid) | |
prediction = F.softmax(prediction, dim=1).flatten() | |
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)} | |
# Device on which to run the model | |
# Set to cuda to load on GPU | |
device = "cpu" | |
model_path = hf_hub_download(repo_id="Sense-X/uniformer_video", filename="uniformer_small_k400_16x8.pth") | |
# Pick a pretrained model | |
model = uniformer_small() | |
state_dict = torch.load(model_path, map_location='cpu') | |
model.load_state_dict(state_dict) | |
# Set to eval mode and move to desired device | |
model = model.to(device) | |
model = model.eval() | |
# Create an id to label name mapping | |
kinetics_id_to_classname = {} | |
for k, v in kinetics_classnames.items(): | |
kinetics_id_to_classname[k] = v | |
inputs = gr.inputs.Video() | |
label = gr.outputs.Label(num_top_classes=5) | |
title = "UniFormer-S" | |
description = "Gradio demo for UniFormer: To use it, simply upload your video, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.04676' target='_blank'>[ICLR2022] UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>" | |
gr.Interface( | |
inference, inputs, outputs=label, | |
title=title, description=description, article=article, | |
examples=[['hitting_baseball.mp4'], ['hoverboarding.mp4'], ['yoga.mp4']] | |
).launch(enable_queue=True, cache_examples=True) | |