Spaces:
Running
Running
initial
Browse files- DESCRIPTION.md +1 -0
- README.md +5 -8
- app.py +1790 -0
- requirements.txt +4 -0
DESCRIPTION.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
SeaEval Leaderboard.
|
README.md
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
---
|
2 |
-
title: SeaEval Leaderboard
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: cc-by-nc-4.0
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: SeaEval Leaderboard
|
3 |
+
emoji: 🥇
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,1790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import json
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
import gradio as gr
|
6 |
+
from huggingface_hub import get_hf_file_metadata, HfApi, hf_hub_download, hf_hub_url
|
7 |
+
from huggingface_hub.repocard import metadata_load
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
TASKS = [
|
11 |
+
"BitextMining",
|
12 |
+
"Classification",
|
13 |
+
"Clustering",
|
14 |
+
"PairClassification",
|
15 |
+
"Reranking",
|
16 |
+
"Retrieval",
|
17 |
+
"STS",
|
18 |
+
"Summarization",
|
19 |
+
]
|
20 |
+
|
21 |
+
TASK_LIST_BITEXT_MINING = ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)']
|
22 |
+
TASK_LIST_BITEXT_MINING_OTHER = ["BornholmBitextMining"]
|
23 |
+
|
24 |
+
TASK_LIST_CLASSIFICATION = [
|
25 |
+
"AmazonCounterfactualClassification (en)",
|
26 |
+
"AmazonPolarityClassification",
|
27 |
+
"AmazonReviewsClassification (en)",
|
28 |
+
"Banking77Classification",
|
29 |
+
"EmotionClassification",
|
30 |
+
"ImdbClassification",
|
31 |
+
"MassiveIntentClassification (en)",
|
32 |
+
"MassiveScenarioClassification (en)",
|
33 |
+
"MTOPDomainClassification (en)",
|
34 |
+
"MTOPIntentClassification (en)",
|
35 |
+
"ToxicConversationsClassification",
|
36 |
+
"TweetSentimentExtractionClassification",
|
37 |
+
]
|
38 |
+
|
39 |
+
TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
|
40 |
+
|
41 |
+
TASK_LIST_CLASSIFICATION_DA = [
|
42 |
+
"AngryTweetsClassification",
|
43 |
+
"DanishPoliticalCommentsClassification",
|
44 |
+
"DKHateClassification",
|
45 |
+
"LccSentimentClassification",
|
46 |
+
"MassiveIntentClassification (da)",
|
47 |
+
"MassiveScenarioClassification (da)",
|
48 |
+
"NordicLangClassification",
|
49 |
+
"ScalaDaClassification",
|
50 |
+
]
|
51 |
+
|
52 |
+
TASK_LIST_CLASSIFICATION_NB = [
|
53 |
+
"NoRecClassification",
|
54 |
+
"NordicLangClassification",
|
55 |
+
"NorwegianParliament",
|
56 |
+
"MassiveIntentClassification (nb)",
|
57 |
+
"MassiveScenarioClassification (nb)",
|
58 |
+
"ScalaNbClassification",
|
59 |
+
]
|
60 |
+
|
61 |
+
TASK_LIST_CLASSIFICATION_PL = [
|
62 |
+
"AllegroReviews",
|
63 |
+
"CBD",
|
64 |
+
"MassiveIntentClassification (pl)",
|
65 |
+
"MassiveScenarioClassification (pl)",
|
66 |
+
"PAC",
|
67 |
+
"PolEmo2.0-IN",
|
68 |
+
"PolEmo2.0-OUT",
|
69 |
+
]
|
70 |
+
|
71 |
+
TASK_LIST_CLASSIFICATION_SV = [
|
72 |
+
"DalajClassification",
|
73 |
+
"MassiveIntentClassification (sv)",
|
74 |
+
"MassiveScenarioClassification (sv)",
|
75 |
+
"NordicLangClassification",
|
76 |
+
"ScalaSvClassification",
|
77 |
+
"SweRecClassification",
|
78 |
+
]
|
79 |
+
|
80 |
+
TASK_LIST_CLASSIFICATION_ZH = [
|
81 |
+
"AmazonReviewsClassification (zh)",
|
82 |
+
"IFlyTek",
|
83 |
+
"JDReview",
|
84 |
+
"MassiveIntentClassification (zh-CN)",
|
85 |
+
"MassiveScenarioClassification (zh-CN)",
|
86 |
+
"MultilingualSentiment",
|
87 |
+
"OnlineShopping",
|
88 |
+
"TNews",
|
89 |
+
"Waimai",
|
90 |
+
]
|
91 |
+
|
92 |
+
TASK_LIST_CLASSIFICATION_OTHER = ['AmazonCounterfactualClassification (de)', 'AmazonCounterfactualClassification (ja)', 'AmazonReviewsClassification (de)', 'AmazonReviewsClassification (es)', 'AmazonReviewsClassification (fr)', 'AmazonReviewsClassification (ja)', 'AmazonReviewsClassification (zh)', 'MTOPDomainClassification (de)', 'MTOPDomainClassification (es)', 'MTOPDomainClassification (fr)', 'MTOPDomainClassification (hi)', 'MTOPDomainClassification (th)', 'MTOPIntentClassification (de)', 'MTOPIntentClassification (es)', 'MTOPIntentClassification (fr)', 'MTOPIntentClassification (hi)', 'MTOPIntentClassification (th)', 'MassiveIntentClassification (af)', 'MassiveIntentClassification (am)', 'MassiveIntentClassification (ar)', 'MassiveIntentClassification (az)', 'MassiveIntentClassification (bn)', 'MassiveIntentClassification (cy)', 'MassiveIntentClassification (de)', 'MassiveIntentClassification (el)', 'MassiveIntentClassification (es)', 'MassiveIntentClassification (fa)', 'MassiveIntentClassification (fi)', 'MassiveIntentClassification (fr)', 'MassiveIntentClassification (he)', 'MassiveIntentClassification (hi)', 'MassiveIntentClassification (hu)', 'MassiveIntentClassification (hy)', 'MassiveIntentClassification (id)', 'MassiveIntentClassification (is)', 'MassiveIntentClassification (it)', 'MassiveIntentClassification (ja)', 'MassiveIntentClassification (jv)', 'MassiveIntentClassification (ka)', 'MassiveIntentClassification (km)', 'MassiveIntentClassification (kn)', 'MassiveIntentClassification (ko)', 'MassiveIntentClassification (lv)', 'MassiveIntentClassification (ml)', 'MassiveIntentClassification (mn)', 'MassiveIntentClassification (ms)', 'MassiveIntentClassification (my)', 'MassiveIntentClassification (nl)', 'MassiveIntentClassification (pt)', 'MassiveIntentClassification (ro)', 'MassiveIntentClassification (ru)', 'MassiveIntentClassification (sl)', 'MassiveIntentClassification (sq)', 'MassiveIntentClassification (sw)', 'MassiveIntentClassification (ta)', 'MassiveIntentClassification (te)', 'MassiveIntentClassification (th)', 'MassiveIntentClassification (tl)', 'MassiveIntentClassification (tr)', 'MassiveIntentClassification (ur)', 'MassiveIntentClassification (vi)', 'MassiveIntentClassification (zh-TW)', 'MassiveScenarioClassification (af)', 'MassiveScenarioClassification (am)', 'MassiveScenarioClassification (ar)', 'MassiveScenarioClassification (az)', 'MassiveScenarioClassification (bn)', 'MassiveScenarioClassification (cy)', 'MassiveScenarioClassification (de)', 'MassiveScenarioClassification (el)', 'MassiveScenarioClassification (es)', 'MassiveScenarioClassification (fa)', 'MassiveScenarioClassification (fi)', 'MassiveScenarioClassification (fr)', 'MassiveScenarioClassification (he)', 'MassiveScenarioClassification (hi)', 'MassiveScenarioClassification (hu)', 'MassiveScenarioClassification (hy)', 'MassiveScenarioClassification (id)', 'MassiveScenarioClassification (is)', 'MassiveScenarioClassification (it)', 'MassiveScenarioClassification (ja)', 'MassiveScenarioClassification (jv)', 'MassiveScenarioClassification (ka)', 'MassiveScenarioClassification (km)', 'MassiveScenarioClassification (kn)', 'MassiveScenarioClassification (ko)', 'MassiveScenarioClassification (lv)', 'MassiveScenarioClassification (ml)', 'MassiveScenarioClassification (mn)', 'MassiveScenarioClassification (ms)', 'MassiveScenarioClassification (my)', 'MassiveScenarioClassification (nl)', 'MassiveScenarioClassification (pt)', 'MassiveScenarioClassification (ro)', 'MassiveScenarioClassification (ru)', 'MassiveScenarioClassification (sl)', 'MassiveScenarioClassification (sq)', 'MassiveScenarioClassification (sw)', 'MassiveScenarioClassification (ta)', 'MassiveScenarioClassification (te)', 'MassiveScenarioClassification (th)', 'MassiveScenarioClassification (tl)', 'MassiveScenarioClassification (tr)', 'MassiveScenarioClassification (ur)', 'MassiveScenarioClassification (vi)', 'MassiveScenarioClassification (zh-TW)']
|
93 |
+
|
94 |
+
TASK_LIST_CLUSTERING = [
|
95 |
+
"ArxivClusteringP2P",
|
96 |
+
"ArxivClusteringS2S",
|
97 |
+
"BiorxivClusteringP2P",
|
98 |
+
"BiorxivClusteringS2S",
|
99 |
+
"MedrxivClusteringP2P",
|
100 |
+
"MedrxivClusteringS2S",
|
101 |
+
"RedditClustering",
|
102 |
+
"RedditClusteringP2P",
|
103 |
+
"StackExchangeClustering",
|
104 |
+
"StackExchangeClusteringP2P",
|
105 |
+
"TwentyNewsgroupsClustering",
|
106 |
+
]
|
107 |
+
|
108 |
+
|
109 |
+
TASK_LIST_CLUSTERING_DE = [
|
110 |
+
"BlurbsClusteringP2P",
|
111 |
+
"BlurbsClusteringS2S",
|
112 |
+
"TenKGnadClusteringP2P",
|
113 |
+
"TenKGnadClusteringS2S",
|
114 |
+
]
|
115 |
+
|
116 |
+
TASK_LIST_CLUSTERING_PL = [
|
117 |
+
"8TagsClustering",
|
118 |
+
]
|
119 |
+
|
120 |
+
TASK_LIST_CLUSTERING_ZH = [
|
121 |
+
"CLSClusteringP2P",
|
122 |
+
"CLSClusteringS2S",
|
123 |
+
"ThuNewsClusteringP2P",
|
124 |
+
"ThuNewsClusteringS2S",
|
125 |
+
]
|
126 |
+
|
127 |
+
TASK_LIST_PAIR_CLASSIFICATION = [
|
128 |
+
"SprintDuplicateQuestions",
|
129 |
+
"TwitterSemEval2015",
|
130 |
+
"TwitterURLCorpus",
|
131 |
+
]
|
132 |
+
|
133 |
+
TASK_LIST_PAIR_CLASSIFICATION_PL = [
|
134 |
+
"CDSC-E",
|
135 |
+
"PPC",
|
136 |
+
"PSC",
|
137 |
+
"SICK-E-PL",
|
138 |
+
]
|
139 |
+
|
140 |
+
TASK_LIST_PAIR_CLASSIFICATION_ZH = [
|
141 |
+
"Cmnli",
|
142 |
+
"Ocnli",
|
143 |
+
]
|
144 |
+
|
145 |
+
TASK_LIST_RERANKING = [
|
146 |
+
"AskUbuntuDupQuestions",
|
147 |
+
"MindSmallReranking",
|
148 |
+
"SciDocsRR",
|
149 |
+
"StackOverflowDupQuestions",
|
150 |
+
]
|
151 |
+
|
152 |
+
TASK_LIST_RERANKING_ZH = [
|
153 |
+
"CMedQAv1",
|
154 |
+
"CMedQAv2",
|
155 |
+
"MMarcoReranking",
|
156 |
+
"T2Reranking",
|
157 |
+
]
|
158 |
+
|
159 |
+
TASK_LIST_RETRIEVAL = [
|
160 |
+
"ArguAna",
|
161 |
+
"ClimateFEVER",
|
162 |
+
"CQADupstackRetrieval",
|
163 |
+
"DBPedia",
|
164 |
+
"FEVER",
|
165 |
+
"FiQA2018",
|
166 |
+
"HotpotQA",
|
167 |
+
"MSMARCO",
|
168 |
+
"NFCorpus",
|
169 |
+
"NQ",
|
170 |
+
"QuoraRetrieval",
|
171 |
+
"SCIDOCS",
|
172 |
+
"SciFact",
|
173 |
+
"Touche2020",
|
174 |
+
"TRECCOVID",
|
175 |
+
]
|
176 |
+
|
177 |
+
TASK_LIST_RETRIEVAL_PL = [
|
178 |
+
"ArguAna-PL",
|
179 |
+
"DBPedia-PL",
|
180 |
+
"FiQA-PL",
|
181 |
+
"HotpotQA-PL",
|
182 |
+
"MSMARCO-PL",
|
183 |
+
"NFCorpus-PL",
|
184 |
+
"NQ-PL",
|
185 |
+
"Quora-PL",
|
186 |
+
"SCIDOCS-PL",
|
187 |
+
"SciFact-PL",
|
188 |
+
"TRECCOVID-PL",
|
189 |
+
]
|
190 |
+
|
191 |
+
TASK_LIST_RETRIEVAL_ZH = [
|
192 |
+
"CmedqaRetrieval",
|
193 |
+
"CovidRetrieval",
|
194 |
+
"DuRetrieval",
|
195 |
+
"EcomRetrieval",
|
196 |
+
"MedicalRetrieval",
|
197 |
+
"MMarcoRetrieval",
|
198 |
+
"T2Retrieval",
|
199 |
+
"VideoRetrieval",
|
200 |
+
]
|
201 |
+
|
202 |
+
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
203 |
+
"CQADupstackAndroidRetrieval",
|
204 |
+
"CQADupstackEnglishRetrieval",
|
205 |
+
"CQADupstackGamingRetrieval",
|
206 |
+
"CQADupstackGisRetrieval",
|
207 |
+
"CQADupstackMathematicaRetrieval",
|
208 |
+
"CQADupstackPhysicsRetrieval",
|
209 |
+
"CQADupstackProgrammersRetrieval",
|
210 |
+
"CQADupstackStatsRetrieval",
|
211 |
+
"CQADupstackTexRetrieval",
|
212 |
+
"CQADupstackUnixRetrieval",
|
213 |
+
"CQADupstackWebmastersRetrieval",
|
214 |
+
"CQADupstackWordpressRetrieval"
|
215 |
+
]
|
216 |
+
|
217 |
+
TASK_LIST_STS = [
|
218 |
+
"BIOSSES",
|
219 |
+
"SICK-R",
|
220 |
+
"STS12",
|
221 |
+
"STS13",
|
222 |
+
"STS14",
|
223 |
+
"STS15",
|
224 |
+
"STS16",
|
225 |
+
"STS17 (en-en)",
|
226 |
+
"STS22 (en)",
|
227 |
+
"STSBenchmark",
|
228 |
+
]
|
229 |
+
|
230 |
+
TASK_LIST_STS_PL = [
|
231 |
+
"CDSC-R",
|
232 |
+
"SICK-R-PL",
|
233 |
+
"STS22 (pl)",
|
234 |
+
]
|
235 |
+
|
236 |
+
TASK_LIST_STS_ZH = [
|
237 |
+
"AFQMC",
|
238 |
+
"ATEC",
|
239 |
+
"BQ",
|
240 |
+
"LCQMC",
|
241 |
+
"PAWSX",
|
242 |
+
"QBQTC",
|
243 |
+
"STS22 (zh)",
|
244 |
+
"STSB",
|
245 |
+
]
|
246 |
+
|
247 |
+
TASK_LIST_STS_OTHER = ["STS17 (ar-ar)", "STS17 (en-ar)", "STS17 (en-de)", "STS17 (en-tr)", "STS17 (es-en)", "STS17 (es-es)", "STS17 (fr-en)", "STS17 (it-en)", "STS17 (ko-ko)", "STS17 (nl-en)", "STS22 (ar)", "STS22 (de)", "STS22 (de-en)", "STS22 (de-fr)", "STS22 (de-pl)", "STS22 (es)", "STS22 (es-en)", "STS22 (es-it)", "STS22 (fr)", "STS22 (fr-pl)", "STS22 (it)", "STS22 (pl)", "STS22 (pl-en)", "STS22 (ru)", "STS22 (tr)", "STS22 (zh-en)", "STSBenchmark",]
|
248 |
+
TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
|
249 |
+
|
250 |
+
TASK_LIST_SUMMARIZATION = ["SummEval",]
|
251 |
+
|
252 |
+
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
|
253 |
+
TASK_LIST_PL = TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLUSTERING_PL + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_RETRIEVAL_PL + TASK_LIST_STS_PL
|
254 |
+
TASK_LIST_ZH = TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH
|
255 |
+
|
256 |
+
TASK_TO_METRIC = {
|
257 |
+
"BitextMining": "f1",
|
258 |
+
"Clustering": "v_measure",
|
259 |
+
"Classification": "accuracy",
|
260 |
+
"PairClassification": "cos_sim_ap",
|
261 |
+
"Reranking": "map",
|
262 |
+
"Retrieval": "ndcg_at_10",
|
263 |
+
"STS": "cos_sim_spearman",
|
264 |
+
"Summarization": "cos_sim_spearman",
|
265 |
+
}
|
266 |
+
|
267 |
+
def make_clickable_model(model_name, link=None):
|
268 |
+
if link is None:
|
269 |
+
link = "https://huggingface.co/" + model_name
|
270 |
+
# Remove user from model name
|
271 |
+
return (
|
272 |
+
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
273 |
+
)
|
274 |
+
|
275 |
+
# Models without metadata, thus we cannot fetch their results naturally
|
276 |
+
EXTERNAL_MODELS = [
|
277 |
+
"all-MiniLM-L12-v2",
|
278 |
+
"all-MiniLM-L6-v2",
|
279 |
+
"all-mpnet-base-v2",
|
280 |
+
"allenai-specter",
|
281 |
+
"Baichuan-text-embedding",
|
282 |
+
"bert-base-swedish-cased",
|
283 |
+
"bert-base-uncased",
|
284 |
+
"bge-base-zh-v1.5",
|
285 |
+
"bge-large-zh-v1.5",
|
286 |
+
"bge-large-zh-noinstruct",
|
287 |
+
"bge-small-zh-v1.5",
|
288 |
+
"contriever-base-msmarco",
|
289 |
+
"cross-en-de-roberta-sentence-transformer",
|
290 |
+
"dfm-encoder-large-v1",
|
291 |
+
"dfm-sentence-encoder-large-1",
|
292 |
+
"distiluse-base-multilingual-cased-v2",
|
293 |
+
"DanskBERT",
|
294 |
+
"e5-base",
|
295 |
+
"e5-large",
|
296 |
+
"e5-small",
|
297 |
+
"electra-small-nordic",
|
298 |
+
"electra-small-swedish-cased-discriminator",
|
299 |
+
"gbert-base",
|
300 |
+
"gbert-large",
|
301 |
+
"gelectra-base",
|
302 |
+
"gelectra-large",
|
303 |
+
"gottbert-base",
|
304 |
+
"glove.6B.300d",
|
305 |
+
"gtr-t5-base",
|
306 |
+
"gtr-t5-large",
|
307 |
+
"gtr-t5-xl",
|
308 |
+
"gtr-t5-xxl",
|
309 |
+
"herbert-base-retrieval-v2",
|
310 |
+
"komninos",
|
311 |
+
"luotuo-bert-medium",
|
312 |
+
"LASER2",
|
313 |
+
"LaBSE",
|
314 |
+
"m3e-base",
|
315 |
+
"m3e-large",
|
316 |
+
"msmarco-bert-co-condensor",
|
317 |
+
"multilingual-e5-base",
|
318 |
+
"multilingual-e5-large",
|
319 |
+
"multilingual-e5-small",
|
320 |
+
"nb-bert-base",
|
321 |
+
"nb-bert-large",
|
322 |
+
"norbert3-base",
|
323 |
+
"norbert3-large",
|
324 |
+
"paraphrase-multilingual-MiniLM-L12-v2",
|
325 |
+
"paraphrase-multilingual-mpnet-base-v2",
|
326 |
+
"sentence-bert-swedish-cased",
|
327 |
+
"sentence-t5-base",
|
328 |
+
"sentence-t5-large",
|
329 |
+
"sentence-t5-xl",
|
330 |
+
"sentence-t5-xxl",
|
331 |
+
"sup-simcse-bert-base-uncased",
|
332 |
+
"st-polish-paraphrase-from-distilroberta",
|
333 |
+
"st-polish-paraphrase-from-mpnet",
|
334 |
+
"text2vec-base-chinese",
|
335 |
+
"text2vec-large-chinese",
|
336 |
+
"text-embedding-ada-002",
|
337 |
+
"text-similarity-ada-001",
|
338 |
+
"text-similarity-babbage-001",
|
339 |
+
"text-similarity-curie-001",
|
340 |
+
"text-similarity-davinci-001",
|
341 |
+
"text-search-ada-doc-001",
|
342 |
+
"text-search-ada-001",
|
343 |
+
"text-search-babbage-001",
|
344 |
+
"text-search-curie-001",
|
345 |
+
"text-search-davinci-001",
|
346 |
+
"titan-embed-text-v1",
|
347 |
+
"unsup-simcse-bert-base-uncased",
|
348 |
+
"use-cmlm-multilingual",
|
349 |
+
"voyage-lite-01-instruct",
|
350 |
+
"xlm-roberta-base",
|
351 |
+
"xlm-roberta-large",
|
352 |
+
]
|
353 |
+
|
354 |
+
EXTERNAL_MODEL_TO_LINK = {
|
355 |
+
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
356 |
+
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
357 |
+
"all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
358 |
+
"all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
359 |
+
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
360 |
+
"Baichuan-text-embedding": "https://platform.baichuan-ai.com/docs/text-Embedding",
|
361 |
+
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
362 |
+
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
363 |
+
"bge-base-zh-v1.5": "https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
364 |
+
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
365 |
+
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
366 |
+
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
367 |
+
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
368 |
+
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
369 |
+
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
370 |
+
"distiluse-base-multilingual-cased-v2": "https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2",
|
371 |
+
"dfm-encoder-large-v1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
372 |
+
"dfm-sentence-encoder-large-1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
373 |
+
"e5-base": "https://huggingface.co/intfloat/e5-base",
|
374 |
+
"e5-large": "https://huggingface.co/intfloat/e5-large",
|
375 |
+
"e5-small": "https://huggingface.co/intfloat/e5-small",
|
376 |
+
"electra-small-nordic": "https://huggingface.co/jonfd/electra-small-nordic",
|
377 |
+
"electra-small-swedish-cased-discriminator": "https://huggingface.co/KBLab/electra-small-swedish-cased-discriminator",
|
378 |
+
"gbert-base": "https://huggingface.co/deepset/gbert-base",
|
379 |
+
"gbert-large": "https://huggingface.co/deepset/gbert-large",
|
380 |
+
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
381 |
+
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
382 |
+
"glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
|
383 |
+
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
384 |
+
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
385 |
+
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
386 |
+
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
387 |
+
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
388 |
+
"herbert-base-retrieval-v2": "https://huggingface.co/ipipan/herbert-base-retrieval-v2",
|
389 |
+
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
390 |
+
"luotuo-bert-medium": "https://huggingface.co/silk-road/luotuo-bert-medium",
|
391 |
+
"LASER2": "https://github.com/facebookresearch/LASER",
|
392 |
+
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
393 |
+
"m3e-base": "https://huggingface.co/moka-ai/m3e-base",
|
394 |
+
"m3e-large": "https://huggingface.co/moka-ai/m3e-large",
|
395 |
+
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
396 |
+
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
397 |
+
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
398 |
+
"multilingual-e5-small": "https://huggingface.co/intfloat/multilingual-e5-small",
|
399 |
+
"nb-bert-base": "https://huggingface.co/NbAiLab/nb-bert-base",
|
400 |
+
"nb-bert-large": "https://huggingface.co/NbAiLab/nb-bert-large",
|
401 |
+
"norbert3-base": "https://huggingface.co/ltg/norbert3-base",
|
402 |
+
"norbert3-large": "https://huggingface.co/ltg/norbert3-large",
|
403 |
+
"paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
404 |
+
"paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
405 |
+
"sentence-bert-swedish-cased": "https://huggingface.co/KBLab/sentence-bert-swedish-cased",
|
406 |
+
"sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
|
407 |
+
"sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
|
408 |
+
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
409 |
+
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
410 |
+
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
411 |
+
"st-polish-paraphrase-from-distilroberta": "https://huggingface.co/sdadas/st-polish-paraphrase-from-distilroberta",
|
412 |
+
"st-polish-paraphrase-from-mpnet": "https://huggingface.co/sdadas/st-polish-paraphrase-from-mpnet",
|
413 |
+
"text2vec-base-chinese": "https://huggingface.co/shibing624/text2vec-base-chinese",
|
414 |
+
"text2vec-large-chinese": "https://huggingface.co/GanymedeNil/text2vec-large-chinese",
|
415 |
+
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
416 |
+
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
417 |
+
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
418 |
+
"text-similarity-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
419 |
+
"text-similarity-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
420 |
+
"text-search-ada-doc-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
421 |
+
"text-search-ada-query-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
422 |
+
"text-search-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
423 |
+
"text-search-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
424 |
+
"text-search-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
425 |
+
"text-search-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
426 |
+
"titan-embed-text-v1": "https://docs.aws.amazon.com/bedrock/latest/userguide/embeddings.html",
|
427 |
+
"unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
|
428 |
+
"use-cmlm-multilingual": "https://huggingface.co/sentence-transformers/use-cmlm-multilingual",
|
429 |
+
"voyage-lite-01-instruct": "https://docs.voyageai.com/embeddings/",
|
430 |
+
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base",
|
431 |
+
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large",
|
432 |
+
}
|
433 |
+
|
434 |
+
EXTERNAL_MODEL_TO_DIM = {
|
435 |
+
"all-MiniLM-L12-v2": 384,
|
436 |
+
"all-MiniLM-L6-v2": 384,
|
437 |
+
"all-mpnet-base-v2": 768,
|
438 |
+
"allenai-specter": 768,
|
439 |
+
"Baichuan-text-embedding": 1024,
|
440 |
+
"bert-base-swedish-cased": 768,
|
441 |
+
"bert-base-uncased": 768,
|
442 |
+
"bge-base-zh-v1.5": 768,
|
443 |
+
"bge-large-zh-v1.5": 1024,
|
444 |
+
"bge-large-zh-noinstruct": 1024,
|
445 |
+
"bge-small-zh-v1.5": 512,
|
446 |
+
"contriever-base-msmarco": 768,
|
447 |
+
"cross-en-de-roberta-sentence-transformer": 768,
|
448 |
+
"DanskBERT": 768,
|
449 |
+
"distiluse-base-multilingual-cased-v2": 512,
|
450 |
+
"dfm-encoder-large-v1": 1024,
|
451 |
+
"dfm-sentence-encoder-large-1": 1024,
|
452 |
+
"e5-base": 768,
|
453 |
+
"e5-small": 384,
|
454 |
+
"e5-large": 1024,
|
455 |
+
"electra-small-nordic": 256,
|
456 |
+
"electra-small-swedish-cased-discriminator": 256,
|
457 |
+
"luotuo-bert-medium": 768,
|
458 |
+
"LASER2": 1024,
|
459 |
+
"LaBSE": 768,
|
460 |
+
"gbert-base": 768,
|
461 |
+
"gbert-large": 1024,
|
462 |
+
"gelectra-base": 768,
|
463 |
+
"gelectra-large": 1024,
|
464 |
+
"glove.6B.300d": 300,
|
465 |
+
"gottbert-base": 768,
|
466 |
+
"gtr-t5-base": 768,
|
467 |
+
"gtr-t5-large": 768,
|
468 |
+
"gtr-t5-xl": 768,
|
469 |
+
"gtr-t5-xxl": 768,
|
470 |
+
"herbert-base-retrieval-v2": 768,
|
471 |
+
"komninos": 300,
|
472 |
+
"m3e-base": 768,
|
473 |
+
"m3e-large": 768,
|
474 |
+
"msmarco-bert-co-condensor": 768,
|
475 |
+
"multilingual-e5-base": 768,
|
476 |
+
"multilingual-e5-small": 384,
|
477 |
+
"multilingual-e5-large": 1024,
|
478 |
+
"nb-bert-base": 768,
|
479 |
+
"nb-bert-large": 1024,
|
480 |
+
"norbert3-base": 768,
|
481 |
+
"norbert3-large": 1024,
|
482 |
+
"paraphrase-multilingual-MiniLM-L12-v2": 384,
|
483 |
+
"paraphrase-multilingual-mpnet-base-v2": 768,
|
484 |
+
"sentence-bert-swedish-cased": 768,
|
485 |
+
"sentence-t5-base": 768,
|
486 |
+
"sentence-t5-large": 768,
|
487 |
+
"sentence-t5-xl": 768,
|
488 |
+
"sentence-t5-xxl": 768,
|
489 |
+
"sup-simcse-bert-base-uncased": 768,
|
490 |
+
"st-polish-paraphrase-from-distilroberta": 768,
|
491 |
+
"st-polish-paraphrase-from-mpnet": 768,
|
492 |
+
"text2vec-base-chinese": 768,
|
493 |
+
"text2vec-large-chinese": 1024,
|
494 |
+
"text-embedding-ada-002": 1536,
|
495 |
+
"text-similarity-ada-001": 1024,
|
496 |
+
"text-similarity-babbage-001": 2048,
|
497 |
+
"text-similarity-curie-001": 4096,
|
498 |
+
"text-similarity-davinci-001": 12288,
|
499 |
+
"text-search-ada-doc-001": 1024,
|
500 |
+
"text-search-ada-query-001": 1024,
|
501 |
+
"text-search-ada-001": 1024,
|
502 |
+
"text-search-babbage-001": 2048,
|
503 |
+
"text-search-curie-001": 4096,
|
504 |
+
"text-search-davinci-001": 12288,
|
505 |
+
"titan-embed-text-v1": 1536,
|
506 |
+
"unsup-simcse-bert-base-uncased": 768,
|
507 |
+
"use-cmlm-multilingual": 768,
|
508 |
+
"voyage-lite-01-instruct": 1024,
|
509 |
+
"xlm-roberta-base": 768,
|
510 |
+
"xlm-roberta-large": 1024,
|
511 |
+
}
|
512 |
+
|
513 |
+
EXTERNAL_MODEL_TO_SEQLEN = {
|
514 |
+
"all-MiniLM-L12-v2": 512,
|
515 |
+
"all-MiniLM-L6-v2": 512,
|
516 |
+
"all-mpnet-base-v2": 514,
|
517 |
+
"allenai-specter": 512,
|
518 |
+
"Baichuan-text-embedding": 512,
|
519 |
+
"bert-base-swedish-cased": 512,
|
520 |
+
"bert-base-uncased": 512,
|
521 |
+
"bge-base-zh-v1.5": 512,
|
522 |
+
"bge-large-zh-v1.5": 512,
|
523 |
+
"bge-large-zh-noinstruct": 512,
|
524 |
+
"bge-small-zh-v1.5": 512,
|
525 |
+
"contriever-base-msmarco": 512,
|
526 |
+
"cross-en-de-roberta-sentence-transformer": 514,
|
527 |
+
"DanskBERT": 514,
|
528 |
+
"dfm-encoder-large-v1": 512,
|
529 |
+
"dfm-sentence-encoder-large-1": 512,
|
530 |
+
"distiluse-base-multilingual-cased-v2": 512,
|
531 |
+
"e5-base": 512,
|
532 |
+
"e5-large": 512,
|
533 |
+
"e5-small": 512,
|
534 |
+
"electra-small-nordic": 512,
|
535 |
+
"electra-small-swedish-cased-discriminator": 512,
|
536 |
+
"gbert-base": 512,
|
537 |
+
"gbert-large": 512,
|
538 |
+
"gelectra-base": 512,
|
539 |
+
"gelectra-large": 512,
|
540 |
+
"gottbert-base": 512,
|
541 |
+
"glove.6B.300d": "N/A",
|
542 |
+
"gtr-t5-base": 512,
|
543 |
+
"gtr-t5-large": 512,
|
544 |
+
"gtr-t5-xl": 512,
|
545 |
+
"gtr-t5-xxl": 512,
|
546 |
+
"herbert-base-retrieval-v2": 514,
|
547 |
+
"komninos": "N/A",
|
548 |
+
"luotuo-bert-medium": 512,
|
549 |
+
"LASER2": "N/A",
|
550 |
+
"LaBSE": 512,
|
551 |
+
"m3e-base": 512,
|
552 |
+
"m3e-large": 512,
|
553 |
+
"msmarco-bert-co-condensor": 512,
|
554 |
+
"multilingual-e5-base": 514,
|
555 |
+
"multilingual-e5-large": 514,
|
556 |
+
"multilingual-e5-small": 512,
|
557 |
+
"nb-bert-base": 512,
|
558 |
+
"nb-bert-large": 512,
|
559 |
+
"norbert3-base": 512,
|
560 |
+
"norbert3-large": 512,
|
561 |
+
"paraphrase-multilingual-MiniLM-L12-v2": 512,
|
562 |
+
"paraphrase-multilingual-mpnet-base-v2": 514,
|
563 |
+
"sentence-bert-swedish-cased": 512,
|
564 |
+
"sentence-t5-base": 512,
|
565 |
+
"sentence-t5-large": 512,
|
566 |
+
"sentence-t5-xl": 512,
|
567 |
+
"sentence-t5-xxl": 512,
|
568 |
+
"sup-simcse-bert-base-uncased": 512,
|
569 |
+
"st-polish-paraphrase-from-distilroberta": 514,
|
570 |
+
"st-polish-paraphrase-from-mpnet": 514,
|
571 |
+
"text2vec-base-chinese": 512,
|
572 |
+
"text2vec-large-chinese": 512,
|
573 |
+
"text-embedding-ada-002": 8191,
|
574 |
+
"text-similarity-ada-001": 2046,
|
575 |
+
"text-similarity-babbage-001": 2046,
|
576 |
+
"text-similarity-curie-001": 2046,
|
577 |
+
"text-similarity-davinci-001": 2046,
|
578 |
+
"text-search-ada-doc-001": 2046,
|
579 |
+
"text-search-ada-query-001": 2046,
|
580 |
+
"text-search-ada-001": 2046,
|
581 |
+
"text-search-babbage-001": 2046,
|
582 |
+
"text-search-curie-001": 2046,
|
583 |
+
"text-search-davinci-001": 2046,
|
584 |
+
"titan-embed-text-v1": 8000,
|
585 |
+
"use-cmlm-multilingual": 512,
|
586 |
+
"unsup-simcse-bert-base-uncased": 512,
|
587 |
+
"voyage-lite-01-instruct": 4096,
|
588 |
+
"xlm-roberta-base": 514,
|
589 |
+
"xlm-roberta-large": 514,
|
590 |
+
}
|
591 |
+
|
592 |
+
EXTERNAL_MODEL_TO_SIZE = {
|
593 |
+
"allenai-specter": 0.44,
|
594 |
+
"all-MiniLM-L12-v2": 0.13,
|
595 |
+
"all-MiniLM-L6-v2": 0.09,
|
596 |
+
"all-mpnet-base-v2": 0.44,
|
597 |
+
"bert-base-uncased": 0.44,
|
598 |
+
"bert-base-swedish-cased": 0.50,
|
599 |
+
"bge-base-zh-v1.5": 0.41,
|
600 |
+
"bge-large-zh-v1.5": 1.30,
|
601 |
+
"bge-large-zh-noinstruct": 1.30,
|
602 |
+
"bge-small-zh-v1.5": 0.10,
|
603 |
+
"cross-en-de-roberta-sentence-transformer": 1.11,
|
604 |
+
"contriever-base-msmarco": 0.44,
|
605 |
+
"DanskBERT": 0.50,
|
606 |
+
"distiluse-base-multilingual-cased-v2": 0.54,
|
607 |
+
"dfm-encoder-large-v1": 1.42,
|
608 |
+
"dfm-sentence-encoder-large-1": 1.63,
|
609 |
+
"e5-base": 0.44,
|
610 |
+
"e5-small": 0.13,
|
611 |
+
"e5-large": 1.34,
|
612 |
+
"electra-small-nordic": 0.09,
|
613 |
+
"electra-small-swedish-cased-discriminator": 0.06,
|
614 |
+
"gbert-base": 0.44,
|
615 |
+
"gbert-large": 1.35,
|
616 |
+
"gelectra-base": 0.44,
|
617 |
+
"gelectra-large": 1.34,
|
618 |
+
"glove.6B.300d": 0.48,
|
619 |
+
"gottbert-base": 0.51,
|
620 |
+
"gtr-t5-base": 0.22,
|
621 |
+
"gtr-t5-large": 0.67,
|
622 |
+
"gtr-t5-xl": 2.48,
|
623 |
+
"gtr-t5-xxl": 9.73,
|
624 |
+
"herbert-base-retrieval-v2": 0.50,
|
625 |
+
"komninos": 0.27,
|
626 |
+
"luotuo-bert-medium": 1.31,
|
627 |
+
"LASER2": 0.17,
|
628 |
+
"LaBSE": 1.88,
|
629 |
+
"m3e-base": 0.41,
|
630 |
+
"m3e-large": 0.41,
|
631 |
+
"msmarco-bert-co-condensor": 0.44,
|
632 |
+
"multilingual-e5-base": 1.11,
|
633 |
+
"multilingual-e5-small": 0.47,
|
634 |
+
"multilingual-e5-large": 2.24,
|
635 |
+
"nb-bert-base": 0.71,
|
636 |
+
"nb-bert-large": 1.42,
|
637 |
+
"norbert3-base": 0.52,
|
638 |
+
"norbert3-large": 1.47,
|
639 |
+
"paraphrase-multilingual-mpnet-base-v2": 1.11,
|
640 |
+
"paraphrase-multilingual-MiniLM-L12-v2": 0.47,
|
641 |
+
"sentence-bert-swedish-cased": 0.50,
|
642 |
+
"sentence-t5-base": 0.22,
|
643 |
+
"sentence-t5-large": 0.67,
|
644 |
+
"sentence-t5-xl": 2.48,
|
645 |
+
"sentence-t5-xxl": 9.73,
|
646 |
+
"sup-simcse-bert-base-uncased": 0.44,
|
647 |
+
"st-polish-paraphrase-from-distilroberta": 0.50,
|
648 |
+
"st-polish-paraphrase-from-mpnet": 0.50,
|
649 |
+
"text2vec-base-chinese": 0.41,
|
650 |
+
"text2vec-large-chinese": 1.30,
|
651 |
+
"unsup-simcse-bert-base-uncased": 0.44,
|
652 |
+
"use-cmlm-multilingual": 1.89,
|
653 |
+
"xlm-roberta-base": 1.12,
|
654 |
+
"xlm-roberta-large": 2.24,
|
655 |
+
}
|
656 |
+
|
657 |
+
MODELS_TO_SKIP = {
|
658 |
+
"baseplate/instructor-large-1", # Duplicate
|
659 |
+
"radames/e5-large", # Duplicate
|
660 |
+
"gentlebowl/instructor-large-safetensors", # Duplicate
|
661 |
+
"Consensus/instructor-base", # Duplicate
|
662 |
+
"GovCompete/instructor-xl", # Duplicate
|
663 |
+
"GovCompete/e5-large-v2", # Duplicate
|
664 |
+
"t12e/instructor-base", # Duplicate
|
665 |
+
"michaelfeil/ct2fast-e5-large-v2",
|
666 |
+
"michaelfeil/ct2fast-e5-large",
|
667 |
+
"michaelfeil/ct2fast-e5-small-v2",
|
668 |
+
"newsrx/instructor-xl-newsrx",
|
669 |
+
"newsrx/instructor-large-newsrx",
|
670 |
+
"fresha/e5-large-v2-endpoint",
|
671 |
+
"ggrn/e5-small-v2",
|
672 |
+
"michaelfeil/ct2fast-e5-small",
|
673 |
+
"jncraton/e5-small-v2-ct2-int8",
|
674 |
+
"anttip/ct2fast-e5-small-v2-hfie",
|
675 |
+
"newsrx/instructor-large",
|
676 |
+
"newsrx/instructor-xl",
|
677 |
+
"dmlls/all-mpnet-base-v2",
|
678 |
+
"cgldo/semanticClone",
|
679 |
+
"Malmuk1/e5-large-v2_Sharded",
|
680 |
+
"jncraton/gte-small-ct2-int8",
|
681 |
+
"Einas/einas_ashkar",
|
682 |
+
"gruber/e5-small-v2-ggml",
|
683 |
+
"jncraton/bge-small-en-ct2-int8",
|
684 |
+
"vectoriseai/bge-small-en",
|
685 |
+
"recipe/embeddings",
|
686 |
+
"dhairya0907/thenlper-get-large",
|
687 |
+
"Narsil/bge-base-en",
|
688 |
+
"kozistr/fused-large-en",
|
689 |
+
"sionic-ai/sionic-ai-v2", # Wait for https://huggingface.co/sionic-ai/sionic-ai-v2/discussions/1
|
690 |
+
"sionic-ai/sionic-ai-v1", # Wait for https://huggingface.co/sionic-ai/sionic-ai-v2/discussions/1
|
691 |
+
"BAAI/bge-large-en", # Deprecated in favor of v1.5
|
692 |
+
"BAAI/bge-base-en", # Deprecated in favor of v1.5
|
693 |
+
"BAAI/bge-small-en", # Deprecated in favor of v1.5
|
694 |
+
"d0rj/e5-large-en-ru",
|
695 |
+
"d0rj/e5-base-en-ru",
|
696 |
+
"d0rj/e5-small-en-ru",
|
697 |
+
"aident-ai/bge-base-en-onnx",
|
698 |
+
"barisaydin/bge-base-en",
|
699 |
+
"barisaydin/gte-large",
|
700 |
+
"barisaydin/gte-base",
|
701 |
+
"barisaydin/gte-small",
|
702 |
+
"barisaydin/bge-small-en",
|
703 |
+
"odunola/e5-base-v2",
|
704 |
+
"goldenrooster/multilingual-e5-large",
|
705 |
+
"davidpeer/gte-small",
|
706 |
+
"barisaydin/bge-large-en",
|
707 |
+
"jamesgpt1/english-large-v1",
|
708 |
+
"vectoriseai/bge-large-en-v1.5",
|
709 |
+
"vectoriseai/bge-base-en-v1.5",
|
710 |
+
"vectoriseai/instructor-large",
|
711 |
+
"vectoriseai/instructor-base",
|
712 |
+
"vectoriseai/gte-large",
|
713 |
+
"vectoriseai/gte-base",
|
714 |
+
"vectoriseai/e5-large-v2",
|
715 |
+
"vectoriseai/bge-small-en-v1.5",
|
716 |
+
"vectoriseai/e5-base-v2",
|
717 |
+
"vectoriseai/e5-large",
|
718 |
+
"vectoriseai/multilingual-e5-large",
|
719 |
+
"vectoriseai/gte-small",
|
720 |
+
"vectoriseai/ember-v1",
|
721 |
+
"vectoriseai/e5-base",
|
722 |
+
"vectoriseai/e5-small-v2",
|
723 |
+
"michaelfeil/ct2fast-bge-large-en-v1.5",
|
724 |
+
"michaelfeil/ct2fast-bge-large-en-v1.5",
|
725 |
+
"michaelfeil/ct2fast-bge-base-en-v1.5",
|
726 |
+
"michaelfeil/ct2fast-gte-large",
|
727 |
+
"michaelfeil/ct2fast-gte-base",
|
728 |
+
"michaelfeil/ct2fast-bge-small-en-v1.5",
|
729 |
+
"rizki/bgr-tf",
|
730 |
+
"ef-zulla/e5-multi-sml-torch",
|
731 |
+
"cherubhao/yogamodel",
|
732 |
+
"morgendigital/multilingual-e5-large-quantized",
|
733 |
+
"jncraton/gte-tiny-ct2-int8",
|
734 |
+
"Research2NLP/electrical_stella",
|
735 |
+
"Intel/bge-base-en-v1.5-sts-int8-static",
|
736 |
+
"Intel/bge-base-en-v1.5-sts-int8-dynamic",
|
737 |
+
"Intel/bge-base-en-v1.5-sst2",
|
738 |
+
"Intel/bge-base-en-v1.5-sst2-int8-static",
|
739 |
+
"Intel/bge-base-en-v1.5-sst2-int8-dynamic",
|
740 |
+
"Intel/bge-small-en-v1.5-sst2",
|
741 |
+
"Intel/bge-small-en-v1.5-sst2-int8-dynamic",
|
742 |
+
"Intel/bge-small-en-v1.5-sst2-int8-static",
|
743 |
+
"binqiangliu/EmbeddingModlebgelargeENv1.5",
|
744 |
+
"DecisionOptimizationSystem/DeepFeatEmbeddingLargeContext",
|
745 |
+
"woody72/multilingual-e5-base",
|
746 |
+
"Severian/embed",
|
747 |
+
"Frazic/udever-bloom-3b-sentence",
|
748 |
+
"jamesgpt1/zzz",
|
749 |
+
}
|
750 |
+
|
751 |
+
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
752 |
+
|
753 |
+
def add_lang(examples):
|
754 |
+
if not(examples["eval_language"]):
|
755 |
+
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
|
756 |
+
else:
|
757 |
+
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
|
758 |
+
return examples
|
759 |
+
|
760 |
+
def add_task(examples):
|
761 |
+
# Could be added to the dataset loading script instead
|
762 |
+
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_NB + TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_ZH:
|
763 |
+
examples["mteb_task"] = "Classification"
|
764 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE + TASK_LIST_CLUSTERING_PL + TASK_LIST_CLUSTERING_ZH:
|
765 |
+
examples["mteb_task"] = "Clustering"
|
766 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_PAIR_CLASSIFICATION_ZH:
|
767 |
+
examples["mteb_task"] = "PairClassification"
|
768 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING + TASK_LIST_RERANKING_ZH:
|
769 |
+
examples["mteb_task"] = "Reranking"
|
770 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH:
|
771 |
+
examples["mteb_task"] = "Retrieval"
|
772 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_STS_NORM + TASK_LIST_STS_PL + TASK_LIST_STS_ZH:
|
773 |
+
examples["mteb_task"] = "STS"
|
774 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
|
775 |
+
examples["mteb_task"] = "Summarization"
|
776 |
+
elif examples["mteb_dataset_name"] in [x.split(" ")[0] for x in TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_OTHER]:
|
777 |
+
examples["mteb_task"] = "BitextMining"
|
778 |
+
else:
|
779 |
+
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
780 |
+
examples["mteb_task"] = "Unknown"
|
781 |
+
return examples
|
782 |
+
|
783 |
+
for model in EXTERNAL_MODELS:
|
784 |
+
ds = load_dataset("mteb/results", model)
|
785 |
+
# For local debugging:
|
786 |
+
#, download_mode='force_redownload', verification_mode="no_checks")
|
787 |
+
ds = ds.map(add_lang)
|
788 |
+
ds = ds.map(add_task)
|
789 |
+
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
|
790 |
+
# For now only one metric per task - Could add more metrics lateron
|
791 |
+
for task, metric in TASK_TO_METRIC.items():
|
792 |
+
ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
|
793 |
+
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
|
794 |
+
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
|
795 |
+
|
796 |
+
def get_dim_seq_size(model):
|
797 |
+
filenames = [sib.rfilename for sib in model.siblings]
|
798 |
+
dim, seq, size = "", "", ""
|
799 |
+
if "1_Pooling/config.json" in filenames:
|
800 |
+
st_config_path = hf_hub_download(model.modelId, filename="1_Pooling/config.json")
|
801 |
+
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
|
802 |
+
elif "2_Pooling/config.json" in filenames:
|
803 |
+
st_config_path = hf_hub_download(model.modelId, filename="2_Pooling/config.json")
|
804 |
+
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
|
805 |
+
if "config.json" in filenames:
|
806 |
+
config_path = hf_hub_download(model.modelId, filename="config.json")
|
807 |
+
config = json.load(open(config_path))
|
808 |
+
if not dim:
|
809 |
+
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
|
810 |
+
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
|
811 |
+
# Get model file size without downloading
|
812 |
+
if "pytorch_model.bin" in filenames:
|
813 |
+
url = hf_hub_url(model.modelId, filename="pytorch_model.bin")
|
814 |
+
meta = get_hf_file_metadata(url)
|
815 |
+
size = round(meta.size / 1e9, 2)
|
816 |
+
elif "pytorch_model.bin.index.json" in filenames:
|
817 |
+
index_path = hf_hub_download(model.modelId, filename="pytorch_model.bin.index.json")
|
818 |
+
"""
|
819 |
+
{
|
820 |
+
"metadata": {
|
821 |
+
"total_size": 28272820224
|
822 |
+
},....
|
823 |
+
"""
|
824 |
+
size = json.load(open(index_path))
|
825 |
+
if ("metadata" in size) and ("total_size" in size["metadata"]):
|
826 |
+
size = round(size["metadata"]["total_size"] / 1e9, 2)
|
827 |
+
elif "model.safetensors" in filenames:
|
828 |
+
url = hf_hub_url(model.modelId, filename="model.safetensors")
|
829 |
+
meta = get_hf_file_metadata(url)
|
830 |
+
size = round(meta.size / 1e9, 2)
|
831 |
+
return dim, seq, size
|
832 |
+
|
833 |
+
def make_datasets_clickable(df):
|
834 |
+
"""Does not work"""
|
835 |
+
if "BornholmBitextMining" in df.columns:
|
836 |
+
link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel"
|
837 |
+
df = df.rename(
|
838 |
+
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
|
839 |
+
return df
|
840 |
+
|
841 |
+
def add_rank(df):
|
842 |
+
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length"]]
|
843 |
+
if len(cols_to_rank) == 1:
|
844 |
+
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
845 |
+
else:
|
846 |
+
df.insert(1, "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
847 |
+
df.sort_values("Average", ascending=False, inplace=True)
|
848 |
+
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
849 |
+
df = df.round(2)
|
850 |
+
# Fill NaN after averaging
|
851 |
+
df.fillna("", inplace=True)
|
852 |
+
return df
|
853 |
+
|
854 |
+
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=False, task_to_metric=TASK_TO_METRIC, rank=True):
|
855 |
+
api = HfApi()
|
856 |
+
models = api.list_models(filter="mteb")
|
857 |
+
# Initialize list to models that we cannot fetch metadata from
|
858 |
+
df_list = []
|
859 |
+
for model in EXTERNAL_MODEL_RESULTS:
|
860 |
+
results_list = [res for task in tasks for res in EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]]]
|
861 |
+
if len(datasets) > 0:
|
862 |
+
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
|
863 |
+
elif langs:
|
864 |
+
# Would be cleaner to rely on an extra language column instead
|
865 |
+
langs_format = [f"({lang})" for lang in langs]
|
866 |
+
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
|
867 |
+
else:
|
868 |
+
res = {k: v for d in results_list for k, v in d.items()}
|
869 |
+
# Model & at least one result
|
870 |
+
if len(res) > 1:
|
871 |
+
if add_emb_dim:
|
872 |
+
res["Model Size (GB)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
|
873 |
+
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
|
874 |
+
res["Sequence Length"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
|
875 |
+
df_list.append(res)
|
876 |
+
|
877 |
+
for model in models:
|
878 |
+
if model.modelId in MODELS_TO_SKIP: continue
|
879 |
+
print("MODEL", model)
|
880 |
+
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
881 |
+
meta = metadata_load(readme_path)
|
882 |
+
# meta['model-index'][0]["results"] is list of elements like:
|
883 |
+
# {
|
884 |
+
# "task": {"type": "Classification"},
|
885 |
+
# "dataset": {
|
886 |
+
# "type": "mteb/amazon_massive_intent",
|
887 |
+
# "name": "MTEB MassiveIntentClassification (nb)",
|
888 |
+
# "config": "nb",
|
889 |
+
# "split": "test",
|
890 |
+
# },
|
891 |
+
# "metrics": [
|
892 |
+
# {"type": "accuracy", "value": 39.81506388702084},
|
893 |
+
# {"type": "f1", "value": 38.809586587791664},
|
894 |
+
# ],
|
895 |
+
# },
|
896 |
+
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
|
897 |
+
if len(datasets) > 0:
|
898 |
+
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
|
899 |
+
elif langs:
|
900 |
+
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
|
901 |
+
else:
|
902 |
+
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
|
903 |
+
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
|
904 |
+
out = {k: v for d in out for k, v in d.items()}
|
905 |
+
out["Model"] = make_clickable_model(model.modelId)
|
906 |
+
# Model & at least one result
|
907 |
+
if len(out) > 1:
|
908 |
+
if add_emb_dim:
|
909 |
+
out["Embedding Dimensions"], out["Sequence Length"], out["Model Size (GB)"] = get_dim_seq_size(model)
|
910 |
+
df_list.append(out)
|
911 |
+
df = pd.DataFrame(df_list)
|
912 |
+
# If there are any models that are the same, merge them
|
913 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
914 |
+
df = df.groupby("Model", as_index=False).first()
|
915 |
+
# Put 'Model' column first
|
916 |
+
cols = sorted(list(df.columns))
|
917 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
918 |
+
df = df[cols]
|
919 |
+
if rank:
|
920 |
+
df = add_rank(df)
|
921 |
+
if fillna:
|
922 |
+
df.fillna("", inplace=True)
|
923 |
+
return df
|
924 |
+
|
925 |
+
def get_mteb_average():
|
926 |
+
global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION
|
927 |
+
|
928 |
+
DATA_OVERALL = get_mteb_data(
|
929 |
+
tasks=[
|
930 |
+
"Classification",
|
931 |
+
"Clustering",
|
932 |
+
"PairClassification",
|
933 |
+
"Reranking",
|
934 |
+
"Retrieval",
|
935 |
+
"STS",
|
936 |
+
"Summarization",
|
937 |
+
],
|
938 |
+
datasets=TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION,
|
939 |
+
fillna=False,
|
940 |
+
add_emb_dim=True,
|
941 |
+
rank=False,
|
942 |
+
)
|
943 |
+
# Debugging:
|
944 |
+
# DATA_OVERALL.to_csv("overall.csv")
|
945 |
+
|
946 |
+
DATA_OVERALL.insert(1, f"Average ({len(TASK_LIST_EN)} datasets)", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
|
947 |
+
DATA_OVERALL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
|
948 |
+
DATA_OVERALL.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", DATA_OVERALL[TASK_LIST_CLUSTERING].mean(axis=1, skipna=False))
|
949 |
+
DATA_OVERALL.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_PAIR_CLASSIFICATION].mean(axis=1, skipna=False))
|
950 |
+
DATA_OVERALL.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", DATA_OVERALL[TASK_LIST_RERANKING].mean(axis=1, skipna=False))
|
951 |
+
DATA_OVERALL.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", DATA_OVERALL[TASK_LIST_RETRIEVAL].mean(axis=1, skipna=False))
|
952 |
+
DATA_OVERALL.insert(7, f"STS Average ({len(TASK_LIST_STS)} datasets)", DATA_OVERALL[TASK_LIST_STS].mean(axis=1, skipna=False))
|
953 |
+
DATA_OVERALL.insert(8, f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)", DATA_OVERALL[TASK_LIST_SUMMARIZATION].mean(axis=1, skipna=False))
|
954 |
+
DATA_OVERALL.sort_values(f"Average ({len(TASK_LIST_EN)} datasets)", ascending=False, inplace=True)
|
955 |
+
# Start ranking from 1
|
956 |
+
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
|
957 |
+
|
958 |
+
DATA_OVERALL = DATA_OVERALL.round(2)
|
959 |
+
|
960 |
+
DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION])
|
961 |
+
# Only keep rows with at least one score in addition to the "Model" & rank column
|
962 |
+
DATA_CLASSIFICATION_EN = DATA_CLASSIFICATION_EN[DATA_CLASSIFICATION_EN.iloc[:, 2:].ne("").any(axis=1)]
|
963 |
+
|
964 |
+
DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING])
|
965 |
+
DATA_CLUSTERING = DATA_CLUSTERING[DATA_CLUSTERING.iloc[:, 2:].ne("").any(axis=1)]
|
966 |
+
|
967 |
+
DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION])
|
968 |
+
DATA_PAIR_CLASSIFICATION = DATA_PAIR_CLASSIFICATION[DATA_PAIR_CLASSIFICATION.iloc[:, 2:].ne("").any(axis=1)]
|
969 |
+
|
970 |
+
DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING])
|
971 |
+
DATA_RERANKING = DATA_RERANKING[DATA_RERANKING.iloc[:, 2:].ne("").any(axis=1)]
|
972 |
+
|
973 |
+
DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL])
|
974 |
+
DATA_RETRIEVAL = DATA_RETRIEVAL[DATA_RETRIEVAL.iloc[:, 2:].ne("").any(axis=1)]
|
975 |
+
|
976 |
+
DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS])
|
977 |
+
DATA_STS_EN = DATA_STS_EN[DATA_STS_EN.iloc[:, 2:].ne("").any(axis=1)]
|
978 |
+
|
979 |
+
DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION])
|
980 |
+
DATA_SUMMARIZATION = DATA_SUMMARIZATION[DATA_SUMMARIZATION.iloc[:, 1:].ne("").any(axis=1)]
|
981 |
+
|
982 |
+
# Fill NaN after averaging
|
983 |
+
DATA_OVERALL.fillna("", inplace=True)
|
984 |
+
|
985 |
+
DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
|
986 |
+
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
|
987 |
+
|
988 |
+
return DATA_OVERALL
|
989 |
+
|
990 |
+
def get_mteb_average_zh():
|
991 |
+
global DATA_OVERALL_ZH, DATA_CLASSIFICATION_ZH, DATA_CLUSTERING_ZH, DATA_PAIR_CLASSIFICATION_ZH, DATA_RERANKING_ZH, DATA_RETRIEVAL_ZH, DATA_STS_ZH
|
992 |
+
DATA_OVERALL_ZH = get_mteb_data(
|
993 |
+
tasks=[
|
994 |
+
"Classification",
|
995 |
+
"Clustering",
|
996 |
+
"PairClassification",
|
997 |
+
"Reranking",
|
998 |
+
"Retrieval",
|
999 |
+
"STS",
|
1000 |
+
],
|
1001 |
+
datasets=TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH,
|
1002 |
+
fillna=False,
|
1003 |
+
add_emb_dim=True,
|
1004 |
+
rank=False,
|
1005 |
+
)
|
1006 |
+
# Debugging:
|
1007 |
+
# DATA_OVERALL_ZH.to_csv("overall.csv")
|
1008 |
+
|
1009 |
+
DATA_OVERALL_ZH.insert(1, f"Average ({len(TASK_LIST_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_ZH].mean(axis=1, skipna=False))
|
1010 |
+
DATA_OVERALL_ZH.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_CLASSIFICATION_ZH].mean(axis=1, skipna=False))
|
1011 |
+
DATA_OVERALL_ZH.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_CLUSTERING_ZH].mean(axis=1, skipna=False))
|
1012 |
+
DATA_OVERALL_ZH.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_PAIR_CLASSIFICATION_ZH].mean(axis=1, skipna=False))
|
1013 |
+
DATA_OVERALL_ZH.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_RERANKING_ZH].mean(axis=1, skipna=False))
|
1014 |
+
DATA_OVERALL_ZH.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_RETRIEVAL_ZH].mean(axis=1, skipna=False))
|
1015 |
+
DATA_OVERALL_ZH.insert(7, f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_STS_ZH].mean(axis=1, skipna=False))
|
1016 |
+
DATA_OVERALL_ZH.sort_values(f"Average ({len(TASK_LIST_ZH)} datasets)", ascending=False, inplace=True)
|
1017 |
+
# Start ranking from 1
|
1018 |
+
DATA_OVERALL_ZH.insert(0, "Rank", list(range(1, len(DATA_OVERALL_ZH) + 1)))
|
1019 |
+
|
1020 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH.round(2)
|
1021 |
+
|
1022 |
+
DATA_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLASSIFICATION_ZH])
|
1023 |
+
# Only keep rows with at least one score in addition to the "Model" & rank column
|
1024 |
+
DATA_CLASSIFICATION_ZH = DATA_CLASSIFICATION_ZH[DATA_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
1025 |
+
|
1026 |
+
DATA_CLUSTERING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLUSTERING_ZH])
|
1027 |
+
DATA_CLUSTERING_ZH = DATA_CLUSTERING_ZH[DATA_CLUSTERING_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
1028 |
+
|
1029 |
+
DATA_PAIR_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_ZH])
|
1030 |
+
DATA_PAIR_CLASSIFICATION_ZH = DATA_PAIR_CLASSIFICATION_ZH[DATA_PAIR_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
1031 |
+
|
1032 |
+
DATA_RERANKING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RERANKING_ZH])
|
1033 |
+
DATA_RERANKING_ZH = DATA_RERANKING_ZH[DATA_RERANKING_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
1034 |
+
|
1035 |
+
DATA_RETRIEVAL_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RETRIEVAL_ZH])
|
1036 |
+
DATA_RETRIEVAL_ZH = DATA_RETRIEVAL_ZH[DATA_RETRIEVAL_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
1037 |
+
|
1038 |
+
DATA_STS_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_STS_ZH])
|
1039 |
+
DATA_STS_ZH = DATA_STS_ZH[DATA_STS_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
1040 |
+
|
1041 |
+
# Fill NaN after averaging
|
1042 |
+
DATA_OVERALL_ZH.fillna("", inplace=True)
|
1043 |
+
|
1044 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_ZH)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)"]]
|
1045 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH[DATA_OVERALL_ZH.iloc[:, 5:].ne("").any(axis=1)]
|
1046 |
+
|
1047 |
+
return DATA_OVERALL_ZH
|
1048 |
+
|
1049 |
+
def get_mteb_average_pl():
|
1050 |
+
global DATA_OVERALL_PL, DATA_CLASSIFICATION_PL, DATA_CLUSTERING_PL, DATA_PAIR_CLASSIFICATION_PL, DATA_RETRIEVAL_PL, DATA_STS_PL
|
1051 |
+
DATA_OVERALL_PL = get_mteb_data(
|
1052 |
+
tasks=[
|
1053 |
+
"Classification",
|
1054 |
+
"Clustering",
|
1055 |
+
"PairClassification",
|
1056 |
+
"Retrieval",
|
1057 |
+
"STS",
|
1058 |
+
],
|
1059 |
+
datasets=TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLUSTERING_PL + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_RETRIEVAL_PL + TASK_LIST_STS_PL,
|
1060 |
+
fillna=False,
|
1061 |
+
add_emb_dim=True,
|
1062 |
+
rank=False,
|
1063 |
+
)
|
1064 |
+
# Debugging:
|
1065 |
+
# DATA_OVERALL_PL.to_csv("overall.csv")
|
1066 |
+
|
1067 |
+
DATA_OVERALL_PL.insert(1, f"Average ({len(TASK_LIST_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_PL].mean(axis=1, skipna=False))
|
1068 |
+
DATA_OVERALL_PL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_CLASSIFICATION_PL].mean(axis=1, skipna=False))
|
1069 |
+
DATA_OVERALL_PL.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_CLUSTERING_PL].mean(axis=1, skipna=False))
|
1070 |
+
DATA_OVERALL_PL.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_PAIR_CLASSIFICATION_PL].mean(axis=1, skipna=False))
|
1071 |
+
DATA_OVERALL_PL.insert(5, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_RETRIEVAL_PL].mean(axis=1, skipna=False))
|
1072 |
+
DATA_OVERALL_PL.insert(6, f"STS Average ({len(TASK_LIST_STS_PL)} datasets)", DATA_OVERALL_PL[TASK_LIST_STS_PL].mean(axis=1, skipna=False))
|
1073 |
+
DATA_OVERALL_PL.sort_values(f"Average ({len(TASK_LIST_PL)} datasets)", ascending=False, inplace=True)
|
1074 |
+
# Start ranking from 1
|
1075 |
+
DATA_OVERALL_PL.insert(0, "Rank", list(range(1, len(DATA_OVERALL_PL) + 1)))
|
1076 |
+
|
1077 |
+
DATA_OVERALL_PL = DATA_OVERALL_PL.round(2)
|
1078 |
+
|
1079 |
+
DATA_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_CLASSIFICATION_PL])
|
1080 |
+
# Only keep rows with at least one score in addition to the "Model" & rank column
|
1081 |
+
DATA_CLASSIFICATION_PL = DATA_CLASSIFICATION_PL[DATA_CLASSIFICATION_PL.iloc[:, 2:].ne("").any(axis=1)]
|
1082 |
+
|
1083 |
+
DATA_CLUSTERING_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_CLUSTERING_PL])
|
1084 |
+
DATA_CLUSTERING_PL = DATA_CLUSTERING_PL[DATA_CLUSTERING_PL.iloc[:, 2:].ne("").any(axis=1)]
|
1085 |
+
|
1086 |
+
DATA_PAIR_CLASSIFICATION_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_PL])
|
1087 |
+
DATA_PAIR_CLASSIFICATION_PL = DATA_PAIR_CLASSIFICATION_PL[DATA_PAIR_CLASSIFICATION_PL.iloc[:, 2:].ne("").any(axis=1)]
|
1088 |
+
|
1089 |
+
DATA_RETRIEVAL_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_RETRIEVAL_PL])
|
1090 |
+
DATA_RETRIEVAL_PL = DATA_RETRIEVAL_PL[DATA_RETRIEVAL_PL.iloc[:, 2:].ne("").any(axis=1)]
|
1091 |
+
|
1092 |
+
DATA_STS_PL = add_rank(DATA_OVERALL_PL[["Model"] + TASK_LIST_STS_PL])
|
1093 |
+
DATA_STS_PL = DATA_STS_PL[DATA_STS_PL.iloc[:, 2:].ne("").any(axis=1)]
|
1094 |
+
|
1095 |
+
# Fill NaN after averaging
|
1096 |
+
DATA_OVERALL_PL.fillna("", inplace=True)
|
1097 |
+
|
1098 |
+
DATA_OVERALL_PL = DATA_OVERALL_PL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_PL)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_PL)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_PL)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_PL)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_PL)} datasets)", f"STS Average ({len(TASK_LIST_STS_PL)} datasets)"]]
|
1099 |
+
DATA_OVERALL_PL = DATA_OVERALL_PL[DATA_OVERALL_PL.iloc[:, 5:].ne("").any(axis=1)]
|
1100 |
+
|
1101 |
+
return DATA_OVERALL_PL
|
1102 |
+
|
1103 |
+
get_mteb_average()
|
1104 |
+
|
1105 |
+
|
1106 |
+
get_mteb_average_pl()
|
1107 |
+
get_mteb_average_zh()
|
1108 |
+
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
1109 |
+
DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
|
1110 |
+
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
1111 |
+
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
1112 |
+
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
1113 |
+
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
1114 |
+
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
1115 |
+
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)
|
1116 |
+
|
1117 |
+
# Exact, add all non-nan integer values for every dataset
|
1118 |
+
NUM_SCORES = 0
|
1119 |
+
DATASETS = []
|
1120 |
+
MODELS = []
|
1121 |
+
# LANGUAGES = []
|
1122 |
+
for d in [
|
1123 |
+
DATA_BITEXT_MINING,
|
1124 |
+
DATA_BITEXT_MINING_OTHER,
|
1125 |
+
DATA_CLASSIFICATION_EN,
|
1126 |
+
DATA_CLASSIFICATION_DA,
|
1127 |
+
DATA_CLASSIFICATION_NB,
|
1128 |
+
DATA_CLASSIFICATION_PL,
|
1129 |
+
DATA_CLASSIFICATION_SV,
|
1130 |
+
DATA_CLASSIFICATION_ZH,
|
1131 |
+
DATA_CLASSIFICATION_OTHER,
|
1132 |
+
DATA_CLUSTERING,
|
1133 |
+
DATA_CLUSTERING_DE,
|
1134 |
+
DATA_CLUSTERING_PL,
|
1135 |
+
DATA_CLUSTERING_ZH,
|
1136 |
+
DATA_PAIR_CLASSIFICATION,
|
1137 |
+
DATA_PAIR_CLASSIFICATION_PL,
|
1138 |
+
DATA_PAIR_CLASSIFICATION_ZH,
|
1139 |
+
DATA_RERANKING,
|
1140 |
+
DATA_RERANKING_ZH,
|
1141 |
+
DATA_RETRIEVAL,
|
1142 |
+
DATA_RETRIEVAL_PL,
|
1143 |
+
DATA_RETRIEVAL_ZH,
|
1144 |
+
DATA_STS_EN,
|
1145 |
+
DATA_STS_PL,
|
1146 |
+
DATA_STS_ZH,
|
1147 |
+
DATA_STS_OTHER,
|
1148 |
+
DATA_SUMMARIZATION,
|
1149 |
+
]:
|
1150 |
+
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
1151 |
+
cols_to_ignore = 3 if "Average" in d.columns else 2
|
1152 |
+
# Count number of scores including only non-nan floats & excluding the rank column
|
1153 |
+
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
|
1154 |
+
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
|
1155 |
+
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
|
1156 |
+
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
|
1157 |
+
MODELS += d["Model"].tolist()
|
1158 |
+
|
1159 |
+
NUM_DATASETS = len(set(DATASETS))
|
1160 |
+
# NUM_LANGUAGES = len(set(LANGUAGES))
|
1161 |
+
NUM_MODELS = len(set(MODELS))
|
1162 |
+
|
1163 |
+
|
1164 |
+
|
1165 |
+
|
1166 |
+
|
1167 |
+
block = gr.Blocks()
|
1168 |
+
with block:
|
1169 |
+
gr.Markdown(f"""
|
1170 |
+
SeaEval Leaderboard. To submit, refer to the <a href="https://seaeval.github.io/" target="_blank" style="text-decoration: underline">SeaEval Website</a> Refer to the [SeaEval paper](https://arxiv.org/abs/2309.04766) for details on metrics, tasks and models.
|
1171 |
+
|
1172 |
+
- **Total Datasets**: 31
|
1173 |
+
- **Total Languages**: 8
|
1174 |
+
- **Total Models**: 5
|
1175 |
+
""")
|
1176 |
+
with gr.Tabs():
|
1177 |
+
|
1178 |
+
|
1179 |
+
# dataset 1: cross-mmlu
|
1180 |
+
with gr.TabItem("Cross-MMLU"):
|
1181 |
+
with gr.Row():
|
1182 |
+
gr.Markdown("""
|
1183 |
+
**Overall Cross-MMLU Leaderboard** 🔮
|
1184 |
+
|
1185 |
+
- **Metric:** Cross-Lingual Consistency, Accuracy, AC3
|
1186 |
+
- **Languages:** English, Chinese, Malay, Indonesian, Spanish, Vietnamese, Filipino
|
1187 |
+
""")
|
1188 |
+
|
1189 |
+
with gr.TabItem("Zero-Shot"):
|
1190 |
+
|
1191 |
+
|
1192 |
+
with gr.TabItem("Overall"):
|
1193 |
+
|
1194 |
+
with gr.Row():
|
1195 |
+
data_bitext_mining = gr.components.Dataframe(
|
1196 |
+
DATA_BITEXT_MINING,
|
1197 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
|
1198 |
+
type="pandas",
|
1199 |
+
)
|
1200 |
+
with gr.Row():
|
1201 |
+
data_run_bitext_mining = gr.Button("Refresh")
|
1202 |
+
data_run_bitext_mining.click(
|
1203 |
+
partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
|
1204 |
+
outputs=data_bitext_mining,
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
with gr.TabItem("Detailed Consistency"):
|
1208 |
+
|
1209 |
+
with gr.Row():
|
1210 |
+
data_bitext_mining = gr.components.Dataframe(
|
1211 |
+
DATA_BITEXT_MINING,
|
1212 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
|
1213 |
+
type="pandas",
|
1214 |
+
)
|
1215 |
+
with gr.Row():
|
1216 |
+
data_run_bitext_mining = gr.Button("Refresh")
|
1217 |
+
data_run_bitext_mining.click(
|
1218 |
+
partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
|
1219 |
+
outputs=data_bitext_mining,
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
with gr.TabItem("Five-Shot"):
|
1223 |
+
|
1224 |
+
with gr.TabItem("Overall"):
|
1225 |
+
|
1226 |
+
with gr.Row():
|
1227 |
+
data_bitext_mining = gr.components.Dataframe(
|
1228 |
+
DATA_BITEXT_MINING,
|
1229 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
|
1230 |
+
type="pandas",
|
1231 |
+
)
|
1232 |
+
with gr.Row():
|
1233 |
+
data_run_bitext_mining = gr.Button("Refresh")
|
1234 |
+
data_run_bitext_mining.click(
|
1235 |
+
partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
|
1236 |
+
outputs=data_bitext_mining,
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
with gr.TabItem("Detailed Consistency"):
|
1240 |
+
|
1241 |
+
with gr.Row():
|
1242 |
+
data_bitext_mining = gr.components.Dataframe(
|
1243 |
+
DATA_BITEXT_MINING,
|
1244 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
|
1245 |
+
type="pandas",
|
1246 |
+
)
|
1247 |
+
with gr.Row():
|
1248 |
+
data_run_bitext_mining = gr.Button("Refresh")
|
1249 |
+
data_run_bitext_mining.click(
|
1250 |
+
partial(get_mteb_data, tasks=["BitextMining"], datasets=TASK_LIST_BITEXT_MINING),
|
1251 |
+
outputs=data_bitext_mining,
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
|
1255 |
+
|
1256 |
+
with gr.TabItem("Classification"):
|
1257 |
+
with gr.TabItem("English"):
|
1258 |
+
with gr.Row():
|
1259 |
+
gr.Markdown("""
|
1260 |
+
**Classification English Leaderboard** ❤️
|
1261 |
+
|
1262 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1263 |
+
- **Languages:** English
|
1264 |
+
""")
|
1265 |
+
with gr.Row():
|
1266 |
+
data_classification_en = gr.components.Dataframe(
|
1267 |
+
DATA_CLASSIFICATION_EN,
|
1268 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_EN.columns),
|
1269 |
+
type="pandas",
|
1270 |
+
)
|
1271 |
+
with gr.Row():
|
1272 |
+
data_run_classification_en = gr.Button("Refresh")
|
1273 |
+
data_run_classification_en.click(
|
1274 |
+
partial(get_mteb_data, tasks=["Classification"], langs=["en"]),
|
1275 |
+
outputs=data_classification_en,
|
1276 |
+
)
|
1277 |
+
with gr.TabItem("Chinese"):
|
1278 |
+
with gr.Row():
|
1279 |
+
gr.Markdown("""
|
1280 |
+
**Classification Chinese Leaderboard** 🧡🇨🇳
|
1281 |
+
|
1282 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1283 |
+
- **Languages:** Chinese
|
1284 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1285 |
+
""")
|
1286 |
+
with gr.Row():
|
1287 |
+
data_classification_zh = gr.components.Dataframe(
|
1288 |
+
DATA_CLASSIFICATION_ZH,
|
1289 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_ZH.columns),
|
1290 |
+
type="pandas",
|
1291 |
+
)
|
1292 |
+
with gr.Row():
|
1293 |
+
data_run_classification_zh = gr.Button("Refresh")
|
1294 |
+
data_run_classification_zh.click(
|
1295 |
+
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_ZH),
|
1296 |
+
outputs=data_classification_zh,
|
1297 |
+
)
|
1298 |
+
with gr.TabItem("Danish"):
|
1299 |
+
with gr.Row():
|
1300 |
+
gr.Markdown("""
|
1301 |
+
**Classification Danish Leaderboard** 🤍🇩🇰
|
1302 |
+
|
1303 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1304 |
+
- **Languages:** Danish
|
1305 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
|
1306 |
+
""")
|
1307 |
+
with gr.Row():
|
1308 |
+
data_classification_da = gr.components.Dataframe(
|
1309 |
+
DATA_CLASSIFICATION_DA,
|
1310 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_DA.columns),
|
1311 |
+
type="pandas",
|
1312 |
+
)
|
1313 |
+
with gr.Row():
|
1314 |
+
data_run_classification_da = gr.Button("Refresh")
|
1315 |
+
data_run_classification_da.click(
|
1316 |
+
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA),
|
1317 |
+
outputs=data_run_classification_da,
|
1318 |
+
)
|
1319 |
+
with gr.TabItem("Norwegian"):
|
1320 |
+
with gr.Row():
|
1321 |
+
gr.Markdown("""
|
1322 |
+
**Classification Norwegian Leaderboard** 💙🇳🇴
|
1323 |
+
|
1324 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1325 |
+
- **Languages:** Norwegian Bokmål
|
1326 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
|
1327 |
+
""")
|
1328 |
+
with gr.Row():
|
1329 |
+
data_classification_nb = gr.components.Dataframe(
|
1330 |
+
DATA_CLASSIFICATION_NB,
|
1331 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_NB.columns),
|
1332 |
+
type="pandas",
|
1333 |
+
)
|
1334 |
+
with gr.Row():
|
1335 |
+
data_run_classification_nb = gr.Button("Refresh")
|
1336 |
+
data_run_classification_nb.click(
|
1337 |
+
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_NB),
|
1338 |
+
outputs=data_classification_nb,
|
1339 |
+
)
|
1340 |
+
with gr.TabItem("Polish"):
|
1341 |
+
with gr.Row():
|
1342 |
+
gr.Markdown("""
|
1343 |
+
**Classification Polish Leaderboard** 🤍🇵🇱
|
1344 |
+
|
1345 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1346 |
+
- **Languages:** Polish
|
1347 |
+
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
|
1348 |
+
""")
|
1349 |
+
with gr.Row():
|
1350 |
+
data_classification_pl = gr.components.Dataframe(
|
1351 |
+
DATA_CLASSIFICATION_PL,
|
1352 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_PL.columns),
|
1353 |
+
type="pandas",
|
1354 |
+
)
|
1355 |
+
with gr.Row():
|
1356 |
+
data_run_classification_pl = gr.Button("Refresh")
|
1357 |
+
data_run_classification_pl.click(
|
1358 |
+
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_PL),
|
1359 |
+
outputs=data_classification_pl,
|
1360 |
+
)
|
1361 |
+
with gr.TabItem("Swedish"):
|
1362 |
+
with gr.Row():
|
1363 |
+
gr.Markdown("""
|
1364 |
+
**Classification Swedish Leaderboard** 💛🇸🇪
|
1365 |
+
|
1366 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1367 |
+
- **Languages:** Swedish
|
1368 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
|
1369 |
+
""")
|
1370 |
+
with gr.Row():
|
1371 |
+
data_classification_sv = gr.components.Dataframe(
|
1372 |
+
DATA_CLASSIFICATION_SV,
|
1373 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_SV.columns),
|
1374 |
+
type="pandas",
|
1375 |
+
)
|
1376 |
+
with gr.Row():
|
1377 |
+
data_run_classification_sv = gr.Button("Refresh")
|
1378 |
+
data_run_classification_sv.click(
|
1379 |
+
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_SV),
|
1380 |
+
outputs=data_classification_sv,
|
1381 |
+
)
|
1382 |
+
with gr.TabItem("Other"):
|
1383 |
+
with gr.Row():
|
1384 |
+
gr.Markdown("""
|
1385 |
+
**Classification Other Languages Leaderboard** 💜💚💙
|
1386 |
+
|
1387 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1388 |
+
- **Languages:** 47 (Only languages not included in the other tabs)
|
1389 |
+
""")
|
1390 |
+
with gr.Row():
|
1391 |
+
data_classification = gr.components.Dataframe(
|
1392 |
+
DATA_CLASSIFICATION_OTHER,
|
1393 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_OTHER) * 10,
|
1394 |
+
type="pandas",
|
1395 |
+
)
|
1396 |
+
with gr.Row():
|
1397 |
+
data_run_classification = gr.Button("Refresh")
|
1398 |
+
data_run_classification.click(
|
1399 |
+
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_OTHER),
|
1400 |
+
outputs=data_classification,
|
1401 |
+
)
|
1402 |
+
with gr.TabItem("Clustering"):
|
1403 |
+
with gr.TabItem("English"):
|
1404 |
+
with gr.Row():
|
1405 |
+
gr.Markdown("""
|
1406 |
+
**Clustering Leaderboard** ✨
|
1407 |
+
|
1408 |
+
- **Metric:** Validity Measure (v_measure)
|
1409 |
+
- **Languages:** English
|
1410 |
+
""")
|
1411 |
+
with gr.Row():
|
1412 |
+
data_clustering = gr.components.Dataframe(
|
1413 |
+
DATA_CLUSTERING,
|
1414 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING.columns),
|
1415 |
+
type="pandas",
|
1416 |
+
)
|
1417 |
+
with gr.Row():
|
1418 |
+
data_run_clustering_en = gr.Button("Refresh")
|
1419 |
+
data_run_clustering_en.click(
|
1420 |
+
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING),
|
1421 |
+
outputs=data_clustering,
|
1422 |
+
)
|
1423 |
+
with gr.TabItem("Chinese"):
|
1424 |
+
with gr.Row():
|
1425 |
+
gr.Markdown("""
|
1426 |
+
**Clustering Chinese Leaderboard** ✨🇨🇳
|
1427 |
+
|
1428 |
+
- **Metric:** Validity Measure (v_measure)
|
1429 |
+
- **Languages:** Chinese
|
1430 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1431 |
+
""")
|
1432 |
+
with gr.Row():
|
1433 |
+
data_clustering_zh = gr.components.Dataframe(
|
1434 |
+
DATA_CLUSTERING_ZH,
|
1435 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_ZH.columns),
|
1436 |
+
type="pandas",
|
1437 |
+
)
|
1438 |
+
with gr.Row():
|
1439 |
+
data_run_clustering_zh = gr.Button("Refresh")
|
1440 |
+
data_run_clustering_zh.click(
|
1441 |
+
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH),
|
1442 |
+
outputs=data_clustering_zh,
|
1443 |
+
)
|
1444 |
+
with gr.TabItem("German"):
|
1445 |
+
with gr.Row():
|
1446 |
+
gr.Markdown("""
|
1447 |
+
**Clustering German Leaderboard** ✨🇩🇪
|
1448 |
+
|
1449 |
+
- **Metric:** Validity Measure (v_measure)
|
1450 |
+
- **Languages:** German
|
1451 |
+
- **Credits:** [Silvan](https://github.com/slvnwhrl)
|
1452 |
+
""")
|
1453 |
+
with gr.Row():
|
1454 |
+
data_clustering_de = gr.components.Dataframe(
|
1455 |
+
DATA_CLUSTERING_DE,
|
1456 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_DE.columns) * 2,
|
1457 |
+
type="pandas",
|
1458 |
+
)
|
1459 |
+
with gr.Row():
|
1460 |
+
data_run_clustering_de = gr.Button("Refresh")
|
1461 |
+
data_run_clustering_de.click(
|
1462 |
+
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_DE),
|
1463 |
+
outputs=data_clustering_de,
|
1464 |
+
)
|
1465 |
+
with gr.TabItem("Polish"):
|
1466 |
+
with gr.Row():
|
1467 |
+
gr.Markdown("""
|
1468 |
+
**Clustering Polish Leaderboard** ✨🇵🇱
|
1469 |
+
|
1470 |
+
- **Metric:** Validity Measure (v_measure)
|
1471 |
+
- **Languages:** Polish
|
1472 |
+
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
|
1473 |
+
""")
|
1474 |
+
with gr.Row():
|
1475 |
+
data_clustering_pl = gr.components.Dataframe(
|
1476 |
+
DATA_CLUSTERING_PL,
|
1477 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_PL.columns) * 2,
|
1478 |
+
type="pandas",
|
1479 |
+
)
|
1480 |
+
with gr.Row():
|
1481 |
+
data_run_clustering_pl = gr.Button("Refresh")
|
1482 |
+
data_run_clustering_pl.click(
|
1483 |
+
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_PL),
|
1484 |
+
outputs=data_clustering_pl,
|
1485 |
+
)
|
1486 |
+
with gr.TabItem("Pair Classification"):
|
1487 |
+
with gr.TabItem("English"):
|
1488 |
+
with gr.Row():
|
1489 |
+
gr.Markdown("""
|
1490 |
+
**Pair Classification English Leaderboard** 🎭
|
1491 |
+
|
1492 |
+
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
1493 |
+
- **Languages:** English
|
1494 |
+
""")
|
1495 |
+
with gr.Row():
|
1496 |
+
data_pair_classification = gr.components.Dataframe(
|
1497 |
+
DATA_PAIR_CLASSIFICATION,
|
1498 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
|
1499 |
+
type="pandas",
|
1500 |
+
)
|
1501 |
+
with gr.Row():
|
1502 |
+
data_run_pair_classification = gr.Button("Refresh")
|
1503 |
+
data_run_pair_classification.click(
|
1504 |
+
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION),
|
1505 |
+
outputs=data_pair_classification,
|
1506 |
+
)
|
1507 |
+
with gr.TabItem("Chinese"):
|
1508 |
+
with gr.Row():
|
1509 |
+
gr.Markdown("""
|
1510 |
+
**Pair Classification Chinese Leaderboard** 🎭🇨🇳
|
1511 |
+
|
1512 |
+
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
1513 |
+
- **Languages:** Chinese
|
1514 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1515 |
+
""")
|
1516 |
+
with gr.Row():
|
1517 |
+
data_pair_classification_zh = gr.components.Dataframe(
|
1518 |
+
DATA_PAIR_CLASSIFICATION_ZH,
|
1519 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_ZH.columns),
|
1520 |
+
type="pandas",
|
1521 |
+
)
|
1522 |
+
with gr.Row():
|
1523 |
+
data_run_pair_classification_zh = gr.Button("Refresh")
|
1524 |
+
data_run_pair_classification_zh.click(
|
1525 |
+
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH),
|
1526 |
+
outputs=data_pair_classification_zh,
|
1527 |
+
)
|
1528 |
+
with gr.TabItem("Polish"):
|
1529 |
+
with gr.Row():
|
1530 |
+
gr.Markdown("""
|
1531 |
+
**Pair Classification Polish Leaderboard** 🎭🇵🇱
|
1532 |
+
|
1533 |
+
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
1534 |
+
- **Languages:** Polish
|
1535 |
+
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
|
1536 |
+
""")
|
1537 |
+
with gr.Row():
|
1538 |
+
data_pair_classification_pl = gr.components.Dataframe(
|
1539 |
+
DATA_PAIR_CLASSIFICATION_PL,
|
1540 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_PL.columns),
|
1541 |
+
type="pandas",
|
1542 |
+
)
|
1543 |
+
with gr.Row():
|
1544 |
+
data_run_pair_classification_pl = gr.Button("Refresh")
|
1545 |
+
data_run_pair_classification_pl.click(
|
1546 |
+
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_PL),
|
1547 |
+
outputs=data_pair_classification_pl,
|
1548 |
+
)
|
1549 |
+
with gr.TabItem("Reranking"):
|
1550 |
+
with gr.TabItem("English"):
|
1551 |
+
with gr.Row():
|
1552 |
+
gr.Markdown("""
|
1553 |
+
**Reranking English Leaderboard** 🥈
|
1554 |
+
|
1555 |
+
- **Metric:** Mean Average Precision (MAP)
|
1556 |
+
- **Languages:** English
|
1557 |
+
""")
|
1558 |
+
with gr.Row():
|
1559 |
+
data_reranking = gr.components.Dataframe(
|
1560 |
+
DATA_RERANKING,
|
1561 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
|
1562 |
+
type="pandas",
|
1563 |
+
)
|
1564 |
+
with gr.Row():
|
1565 |
+
data_run_reranking = gr.Button("Refresh")
|
1566 |
+
data_run_reranking.click(
|
1567 |
+
partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING),
|
1568 |
+
outputs=data_reranking,
|
1569 |
+
)
|
1570 |
+
with gr.TabItem("Chinese"):
|
1571 |
+
with gr.Row():
|
1572 |
+
gr.Markdown("""
|
1573 |
+
**Reranking Chinese Leaderboard** 🥈🇨🇳
|
1574 |
+
|
1575 |
+
- **Metric:** Mean Average Precision (MAP)
|
1576 |
+
- **Languages:** Chinese
|
1577 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1578 |
+
""")
|
1579 |
+
with gr.Row():
|
1580 |
+
data_reranking_zh = gr.components.Dataframe(
|
1581 |
+
DATA_RERANKING_ZH,
|
1582 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_ZH.columns),
|
1583 |
+
type="pandas",
|
1584 |
+
)
|
1585 |
+
with gr.Row():
|
1586 |
+
data_run_reranking_zh = gr.Button("Refresh")
|
1587 |
+
data_run_reranking_zh.click(
|
1588 |
+
partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH),
|
1589 |
+
outputs=data_reranking_zh,
|
1590 |
+
)
|
1591 |
+
with gr.TabItem("Retrieval"):
|
1592 |
+
with gr.TabItem("English"):
|
1593 |
+
with gr.Row():
|
1594 |
+
gr.Markdown("""
|
1595 |
+
**Retrieval English Leaderboard** 🔎
|
1596 |
+
|
1597 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1598 |
+
- **Languages:** English
|
1599 |
+
""")
|
1600 |
+
with gr.Row():
|
1601 |
+
data_retrieval = gr.components.Dataframe(
|
1602 |
+
DATA_RETRIEVAL,
|
1603 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
1604 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
|
1605 |
+
type="pandas",
|
1606 |
+
)
|
1607 |
+
with gr.Row():
|
1608 |
+
data_run_retrieval = gr.Button("Refresh")
|
1609 |
+
data_run_retrieval.click(
|
1610 |
+
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL),
|
1611 |
+
outputs=data_retrieval,
|
1612 |
+
)
|
1613 |
+
with gr.TabItem("Chinese"):
|
1614 |
+
with gr.Row():
|
1615 |
+
gr.Markdown("""
|
1616 |
+
**Retrieval Chinese Leaderboard** 🔎🇨🇳
|
1617 |
+
|
1618 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1619 |
+
- **Languages:** Chinese
|
1620 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1621 |
+
""")
|
1622 |
+
with gr.Row():
|
1623 |
+
data_retrieval_zh = gr.components.Dataframe(
|
1624 |
+
DATA_RETRIEVAL_ZH,
|
1625 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
1626 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_ZH.columns) * 2,
|
1627 |
+
type="pandas",
|
1628 |
+
)
|
1629 |
+
with gr.Row():
|
1630 |
+
data_run_retrieval_zh = gr.Button("Refresh")
|
1631 |
+
data_run_retrieval_zh.click(
|
1632 |
+
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_ZH),
|
1633 |
+
outputs=data_retrieval_zh,
|
1634 |
+
)
|
1635 |
+
with gr.TabItem("Polish"):
|
1636 |
+
with gr.Row():
|
1637 |
+
gr.Markdown("""
|
1638 |
+
**Retrieval Polish Leaderboard** 🔎🇵🇱
|
1639 |
+
|
1640 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1641 |
+
- **Languages:** Polish
|
1642 |
+
- **Credits:** [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840)
|
1643 |
+
""")
|
1644 |
+
with gr.Row():
|
1645 |
+
data_retrieval_pl = gr.components.Dataframe(
|
1646 |
+
DATA_RETRIEVAL_PL,
|
1647 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
1648 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_PL.columns) * 2,
|
1649 |
+
type="pandas",
|
1650 |
+
)
|
1651 |
+
with gr.Row():
|
1652 |
+
data_run_retrieval_pl = gr.Button("Refresh")
|
1653 |
+
data_run_retrieval_pl.click(
|
1654 |
+
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_PL),
|
1655 |
+
outputs=data_retrieval_pl,
|
1656 |
+
)
|
1657 |
+
with gr.TabItem("STS"):
|
1658 |
+
with gr.TabItem("English"):
|
1659 |
+
with gr.Row():
|
1660 |
+
gr.Markdown("""
|
1661 |
+
**STS English Leaderboard** 🤖
|
1662 |
+
|
1663 |
+
- **Metric:** Spearman correlation based on cosine similarity
|
1664 |
+
- **Languages:** English
|
1665 |
+
""")
|
1666 |
+
with gr.Row():
|
1667 |
+
data_sts_en = gr.components.Dataframe(
|
1668 |
+
DATA_STS_EN,
|
1669 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_EN.columns),
|
1670 |
+
type="pandas",
|
1671 |
+
)
|
1672 |
+
with gr.Row():
|
1673 |
+
data_run_sts_en = gr.Button("Refresh")
|
1674 |
+
data_run_sts_en.click(
|
1675 |
+
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS),
|
1676 |
+
outputs=data_sts_en,
|
1677 |
+
)
|
1678 |
+
with gr.TabItem("Chinese"):
|
1679 |
+
with gr.Row():
|
1680 |
+
gr.Markdown("""
|
1681 |
+
**STS Chinese Leaderboard** 🤖🇨🇳
|
1682 |
+
|
1683 |
+
- **Metric:** Spearman correlation based on cosine similarity
|
1684 |
+
- **Languages:** Chinese
|
1685 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1686 |
+
""")
|
1687 |
+
with gr.Row():
|
1688 |
+
data_sts_zh = gr.components.Dataframe(
|
1689 |
+
DATA_STS_ZH,
|
1690 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_ZH.columns),
|
1691 |
+
type="pandas",
|
1692 |
+
)
|
1693 |
+
with gr.Row():
|
1694 |
+
data_run_sts_zh = gr.Button("Refresh")
|
1695 |
+
data_run_sts_zh.click(
|
1696 |
+
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH),
|
1697 |
+
outputs=data_sts_zh,
|
1698 |
+
)
|
1699 |
+
with gr.TabItem("Polish"):
|
1700 |
+
with gr.Row():
|
1701 |
+
gr.Markdown("""
|
1702 |
+
**STS Polish Leaderboard** 🤖🇵🇱
|
1703 |
+
|
1704 |
+
- **Metric:** Spearman correlation based on cosine similarity
|
1705 |
+
- **Languages:** Polish
|
1706 |
+
- **Credits:** [Rafał Poświata](https://github.com/rafalposwiata)
|
1707 |
+
""")
|
1708 |
+
with gr.Row():
|
1709 |
+
data_sts_pl = gr.components.Dataframe(
|
1710 |
+
DATA_STS_PL,
|
1711 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_PL.columns),
|
1712 |
+
type="pandas",
|
1713 |
+
)
|
1714 |
+
with gr.Row():
|
1715 |
+
data_run_sts_pl = gr.Button("Refresh")
|
1716 |
+
data_run_sts_pl.click(
|
1717 |
+
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_PL),
|
1718 |
+
outputs=data_sts_pl,
|
1719 |
+
)
|
1720 |
+
with gr.TabItem("Other"):
|
1721 |
+
with gr.Row():
|
1722 |
+
gr.Markdown("""
|
1723 |
+
**STS Other Leaderboard** 👽
|
1724 |
+
|
1725 |
+
- **Metric:** Spearman correlation based on cosine similarity
|
1726 |
+
- **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)
|
1727 |
+
""")
|
1728 |
+
with gr.Row():
|
1729 |
+
data_sts_other = gr.components.Dataframe(
|
1730 |
+
DATA_STS_OTHER,
|
1731 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_OTHER.columns) * 2,
|
1732 |
+
type="pandas",
|
1733 |
+
)
|
1734 |
+
with gr.Row():
|
1735 |
+
data_run_sts_other = gr.Button("Refresh")
|
1736 |
+
data_run_sts_other.click(
|
1737 |
+
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_OTHER),
|
1738 |
+
outputs=data_sts_other,
|
1739 |
+
)
|
1740 |
+
with gr.TabItem("Summarization"):
|
1741 |
+
with gr.Row():
|
1742 |
+
gr.Markdown("""
|
1743 |
+
**Summarization Leaderboard** 📜
|
1744 |
+
|
1745 |
+
- **Metric:** Spearman correlation based on cosine similarity
|
1746 |
+
- **Languages:** English
|
1747 |
+
""")
|
1748 |
+
with gr.Row():
|
1749 |
+
data_summarization = gr.components.Dataframe(
|
1750 |
+
DATA_SUMMARIZATION,
|
1751 |
+
datatype=["number", "markdown"] + ["number"] * 2,
|
1752 |
+
type="pandas",
|
1753 |
+
)
|
1754 |
+
with gr.Row():
|
1755 |
+
data_run = gr.Button("Refresh")
|
1756 |
+
data_run.click(
|
1757 |
+
partial(get_mteb_data, tasks=["Summarization"]),
|
1758 |
+
outputs=data_summarization,
|
1759 |
+
)
|
1760 |
+
gr.Markdown(r"""
|
1761 |
+
|
1762 |
+
If this work is useful to you, please consider citing:
|
1763 |
+
|
1764 |
+
```bibtex
|
1765 |
+
@article{SeaEval2023,
|
1766 |
+
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
|
1767 |
+
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
|
1768 |
+
journal={arXiv preprint arXiv:2309.04766},
|
1769 |
+
year={2023}
|
1770 |
+
}
|
1771 |
+
```
|
1772 |
+
""")
|
1773 |
+
# Running the functions on page load in addition to when the button is clicked
|
1774 |
+
# This is optional - If deactivated the data loaded at "Build time" is shown like for Overall tab
|
1775 |
+
"""
|
1776 |
+
block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
|
1777 |
+
"""
|
1778 |
+
|
1779 |
+
block.queue(max_size=10)
|
1780 |
+
block.launch(server_name="0.0.0.0", share=True)
|
1781 |
+
|
1782 |
+
|
1783 |
+
# Possible changes:
|
1784 |
+
# Could add graphs / other visual content
|
1785 |
+
# Could add verification marks
|
1786 |
+
|
1787 |
+
# Sources:
|
1788 |
+
# https://huggingface.co/spaces/gradio/leaderboard
|
1789 |
+
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
|
1790 |
+
# https://getemoji.com/
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
datasets
|
3 |
+
pandas
|
4 |
+
huggingface_hub
|