last working update
Browse files
app.py
CHANGED
@@ -6,6 +6,8 @@ from langchain_community.llms import Together
|
|
6 |
from langchain import hub
|
7 |
from operator import itemgetter
|
8 |
from langchain.schema.runnable import RunnableParallel
|
|
|
|
|
9 |
from langchain.chains import LLMChain
|
10 |
from langchain.chains import RetrievalQA
|
11 |
from langchain.schema.output_parser import StrOutputParser
|
@@ -19,23 +21,33 @@ import time
|
|
19 |
|
20 |
# Load the embedding function
|
21 |
model_name = "BAAI/bge-base-en"
|
|
|
|
|
|
|
|
|
22 |
encode_kwargs=encode_kwargs
|
23 |
)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
# Load the LLM
|
33 |
llm = Together(
|
34 |
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
39 |
|
40 |
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
41 |
|
@@ -45,24 +57,20 @@ def _combine_documents(
|
|
45 |
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
46 |
return document_separator.join(doc_strings)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
chistory = []
|
51 |
|
|
|
52 |
# Append the new message to the chat history
|
53 |
chistory.append({"role": role, "content": content})
|
54 |
|
55 |
-
|
56 |
# Define the Streamlit app
|
57 |
def app():
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
with st.sidebar:
|
62 |
-
|
63 |
st.title("dochatter")
|
64 |
# Create a dropdown selection box
|
65 |
option = st.selectbox(
|
|
|
|
|
66 |
)
|
67 |
# Depending on the selected option, choose the appropriate retriever
|
68 |
if option == 'RespiratoryFishman':
|
@@ -72,131 +80,61 @@ def app():
|
|
72 |
elif option == 'RespiratoryMurray':
|
73 |
persist_directory = "./respmurray/"
|
74 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes")
|
75 |
-
|
76 |
-
|
77 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
78 |
elif option == 'MedMRCP2':
|
79 |
persist_directory = "./medmrcp2store/"
|
80 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes")
|
81 |
-
|
82 |
-
|
83 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
84 |
elif option == 'General Medicine':
|
85 |
persist_directory = "./oxfordmedbookdir/"
|
86 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed")
|
87 |
-
|
88 |
-
|
89 |
retriever = vectordb.as_retriever(search_kwargs={"k": 7})
|
90 |
-
|
91 |
-
|
92 |
else:
|
93 |
persist_directory = "./mrcpchromadb/"
|
94 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
|
95 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
# Session State
|
112 |
-
|
113 |
if "messages" not in st.session_state.keys():
|
114 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer.
|
128 |
-
|
129 |
Chat History:
|
130 |
{chat_history}
|
131 |
Follow Up Input: {question}
|
|
|
|
|
132 |
|
133 |
template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
|
134 |
{context}
|
135 |
-
|
136 |
Question: {question}
|
137 |
"""
|
138 |
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
|
139 |
|
140 |
-
|
141 |
_inputs = RunnableParallel(
|
142 |
standalone_question=RunnablePassthrough.assign(
|
143 |
chat_history=lambda x: chistory
|
144 |
) | CONDENSE_QUESTION_PROMPT | llmc | StrOutputParser(),
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
)
|
149 |
_context = {
|
150 |
"context": itemgetter("standalone_question") | retriever | _combine_documents,
|
|
|
151 |
}
|
152 |
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
|
153 |
|
154 |
-
st.header("
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
for message in st.session_state.messages:
|
167 |
with st.chat_message(message["role"]):
|
168 |
st.write(message["content"])
|
169 |
store_chat_history(message["role"], message["content"])
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
prompts2 = st.chat_input("Say something")
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
if prompts2:
|
194 |
st.session_state.messages.append({"role": "user", "content": prompts2})
|
195 |
with st.chat_message("user"):
|
196 |
st.write(prompts2)
|
197 |
|
198 |
-
|
199 |
-
|
200 |
if st.session_state.messages[-1]["role"] != "assistant":
|
201 |
with st.chat_message("assistant"):
|
202 |
with st.spinner("Thinking..."):
|
@@ -216,32 +154,5 @@ def app():
|
|
216 |
st.error(f"An error occurred: {e}")
|
217 |
time.sleep(2) # Wait 2 seconds before retrying
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
if __name__ == '__main__':
|
247 |
-
app()
|
|
|
6 |
from langchain import hub
|
7 |
from operator import itemgetter
|
8 |
from langchain.schema.runnable import RunnableParallel
|
9 |
+
from langchain.schema import format_document
|
10 |
+
from typing import List, Tuple
|
11 |
from langchain.chains import LLMChain
|
12 |
from langchain.chains import RetrievalQA
|
13 |
from langchain.schema.output_parser import StrOutputParser
|
|
|
21 |
|
22 |
# Load the embedding function
|
23 |
model_name = "BAAI/bge-base-en"
|
24 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
25 |
+
|
26 |
+
embedding_function = HuggingFaceBgeEmbeddings(
|
27 |
+
model_name=model_name,
|
28 |
encode_kwargs=encode_kwargs
|
29 |
)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Load the LLM
|
32 |
llm = Together(
|
33 |
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
|
34 |
+
temperature=0.2,
|
35 |
+
max_tokens=19096,
|
36 |
+
top_k=10,
|
37 |
+
together_api_key=os.environ['pilotikval']
|
38 |
+
)
|
39 |
|
40 |
+
# Load the summarizeLLM
|
41 |
+
llmc = Together(
|
42 |
+
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
43 |
+
temperature=0.2,
|
44 |
+
max_tokens=1024,
|
45 |
+
top_k=1,
|
46 |
+
together_api_key=os.environ['pilotikval']
|
47 |
+
)
|
48 |
|
49 |
+
msgs = StreamlitChatMessageHistory(key="langchain_messages")
|
50 |
+
memory = ConversationBufferMemory(chat_memory=msgs)
|
51 |
|
52 |
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
53 |
|
|
|
57 |
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
58 |
return document_separator.join(doc_strings)
|
59 |
|
|
|
|
|
60 |
chistory = []
|
61 |
|
62 |
+
def store_chat_history(role: str, content: str):
|
63 |
# Append the new message to the chat history
|
64 |
chistory.append({"role": role, "content": content})
|
65 |
|
|
|
66 |
# Define the Streamlit app
|
67 |
def app():
|
|
|
|
|
|
|
68 |
with st.sidebar:
|
|
|
69 |
st.title("dochatter")
|
70 |
# Create a dropdown selection box
|
71 |
option = st.selectbox(
|
72 |
+
'Which retriever would you like to use?',
|
73 |
+
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
|
74 |
)
|
75 |
# Depending on the selected option, choose the appropriate retriever
|
76 |
if option == 'RespiratoryFishman':
|
|
|
80 |
elif option == 'RespiratoryMurray':
|
81 |
persist_directory = "./respmurray/"
|
82 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes")
|
|
|
|
|
83 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
84 |
elif option == 'MedMRCP2':
|
85 |
persist_directory = "./medmrcp2store/"
|
86 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes")
|
|
|
|
|
87 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
88 |
elif option == 'General Medicine':
|
89 |
persist_directory = "./oxfordmedbookdir/"
|
90 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed")
|
|
|
|
|
91 |
retriever = vectordb.as_retriever(search_kwargs={"k": 7})
|
|
|
|
|
92 |
else:
|
93 |
persist_directory = "./mrcpchromadb/"
|
94 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
|
95 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Session State
|
|
|
98 |
if "messages" not in st.session_state.keys():
|
99 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer.
|
|
|
102 |
Chat History:
|
103 |
{chat_history}
|
104 |
Follow Up Input: {question}
|
105 |
+
Standalone question:"""
|
106 |
+
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
107 |
|
108 |
template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
|
109 |
{context}
|
|
|
110 |
Question: {question}
|
111 |
"""
|
112 |
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
|
113 |
|
|
|
114 |
_inputs = RunnableParallel(
|
115 |
standalone_question=RunnablePassthrough.assign(
|
116 |
chat_history=lambda x: chistory
|
117 |
) | CONDENSE_QUESTION_PROMPT | llmc | StrOutputParser(),
|
|
|
|
|
|
|
118 |
)
|
119 |
_context = {
|
120 |
"context": itemgetter("standalone_question") | retriever | _combine_documents,
|
121 |
+
"question": lambda x: x["standalone_question"],
|
122 |
}
|
123 |
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
|
124 |
|
125 |
+
st.header("Ask Away!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
for message in st.session_state.messages:
|
127 |
with st.chat_message(message["role"]):
|
128 |
st.write(message["content"])
|
129 |
store_chat_history(message["role"], message["content"])
|
130 |
|
|
|
|
|
|
|
|
|
|
|
131 |
prompts2 = st.chat_input("Say something")
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
if prompts2:
|
134 |
st.session_state.messages.append({"role": "user", "content": prompts2})
|
135 |
with st.chat_message("user"):
|
136 |
st.write(prompts2)
|
137 |
|
|
|
|
|
138 |
if st.session_state.messages[-1]["role"] != "assistant":
|
139 |
with st.chat_message("assistant"):
|
140 |
with st.spinner("Thinking..."):
|
|
|
154 |
st.error(f"An error occurred: {e}")
|
155 |
time.sleep(2) # Wait 2 seconds before retrying
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
if __name__ == '__main__':
|
158 |
+
app()
|