mainfile cgpt 3
Browse files
app.py
CHANGED
@@ -57,7 +57,29 @@ def _combine_documents(docs, document_prompt=PromptTemplate.from_template("{page
|
|
57 |
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
58 |
return document_separator.join(doc_strings)
|
59 |
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# Define the Streamlit app
|
63 |
def app():
|
@@ -67,8 +89,6 @@ def app():
|
|
67 |
'Which retriever would you like to use?',
|
68 |
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
|
69 |
)
|
70 |
-
|
71 |
-
|
72 |
|
73 |
# Define retrievers based on option
|
74 |
persist_directory = {
|
@@ -90,18 +110,6 @@ def app():
|
|
90 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name=collection_name)
|
91 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
92 |
|
93 |
-
|
94 |
-
# Define the chain using LCEL
|
95 |
-
condense_question_chain = RunnableLambda(lambda x: {"chat_history": chistory, "question": x}) | CONDENSE_QUESTION_PROMPT | llmc
|
96 |
-
retriever_chain = RunnableLambda(lambda x: {"standalone_question": x}) | retriever | _combine_documents
|
97 |
-
answer_chain = ANSWER_PROMPT | llm
|
98 |
-
|
99 |
-
conversational_qa_chain = RunnableParallel(
|
100 |
-
condense_question=condense_question_chain,
|
101 |
-
retrieve=retriever_chain,
|
102 |
-
generate_answer=answer_chain
|
103 |
-
)
|
104 |
-
|
105 |
if "messages" not in st.session_state:
|
106 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
107 |
|
@@ -119,6 +127,7 @@ def app():
|
|
119 |
st.write(prompts2)
|
120 |
|
121 |
if st.session_state.messages[-1]["role"] != "assistant":
|
|
|
122 |
with st.chat_message("assistant"):
|
123 |
with st.spinner("Thinking..."):
|
124 |
response = conversational_qa_chain.invoke(
|
|
|
57 |
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
58 |
return document_separator.join(doc_strings)
|
59 |
|
60 |
+
# Function to store chat history
|
61 |
+
chistory = []
|
62 |
|
63 |
+
def store_chat_history(role: str, content: str):
|
64 |
+
chistory.append({"role": role, "content": content})
|
65 |
+
|
66 |
+
# Define the chain using LCEL
|
67 |
+
def create_conversational_qa_chain(retriever, condense_llm, answer_llm):
|
68 |
+
condense_question_chain = RunnableLambda(
|
69 |
+
lambda x: {"chat_history": chistory, "question": x['question']}
|
70 |
+
) | CONDENSE_QUESTION_PROMPT | condense_llm
|
71 |
+
|
72 |
+
retrieval_chain = RunnableLambda(
|
73 |
+
lambda x: {"standalone_question": x}
|
74 |
+
) | retriever | _combine_documents
|
75 |
+
|
76 |
+
answer_chain = ANSWER_PROMPT | answer_llm
|
77 |
+
|
78 |
+
return RunnableParallel(
|
79 |
+
condense_question=condense_question_chain,
|
80 |
+
retrieve=retrieval_chain,
|
81 |
+
generate_answer=answer_chain
|
82 |
+
)
|
83 |
|
84 |
# Define the Streamlit app
|
85 |
def app():
|
|
|
89 |
'Which retriever would you like to use?',
|
90 |
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
|
91 |
)
|
|
|
|
|
92 |
|
93 |
# Define retrievers based on option
|
94 |
persist_directory = {
|
|
|
110 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name=collection_name)
|
111 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
if "messages" not in st.session_state:
|
114 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
115 |
|
|
|
127 |
st.write(prompts2)
|
128 |
|
129 |
if st.session_state.messages[-1]["role"] != "assistant":
|
130 |
+
conversational_qa_chain = create_conversational_qa_chain(retriever, llmc, llm)
|
131 |
with st.chat_message("assistant"):
|
132 |
with st.spinner("Thinking..."):
|
133 |
response = conversational_qa_chain.invoke(
|