Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,16 +20,16 @@ speaker_model = EncoderClassifier.from_hparams(
|
|
20 |
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb")
|
21 |
)
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
#
|
32 |
-
|
33 |
|
34 |
def create_speaker_embedding(waveform):
|
35 |
with torch.no_grad():
|
|
|
20 |
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb")
|
21 |
)
|
22 |
|
23 |
+
# Load a sample from the dataset for speaker embedding
|
24 |
+
try:
|
25 |
+
dataset = load_dataset("mozilla-foundation/common_voice_17_0", "hi", split="validated", trust_remote_code=True)
|
26 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
27 |
+
sample = dataset[0]
|
28 |
+
speaker_embedding = create_speaker_embedding(sample['audio']['array'])
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error loading dataset: {e}")
|
31 |
+
# Use a random speaker embedding as fallback
|
32 |
+
speaker_embedding = torch.randn(1, 512)
|
33 |
|
34 |
def create_speaker_embedding(waveform):
|
35 |
with torch.no_grad():
|