Spaces:
Runtime error
Runtime error
#!pip install gradio | |
import os | |
import torch | |
import gradio as gr | |
import time | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
def translation(text): | |
model_checkpoint = "bigscience/mt0-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) | |
#inference | |
inputs = tokenizer("translate to darija : " + text, return_tensors="pt") | |
output = model.generate(**inputs) | |
output = tokenizer.decode(output.cpu().numpy()[0], skip_special_tokens=True) | |
return output | |
if __name__ == '__main__': | |
print('\tinit models') | |
#inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'), | |
inputs = [gr.inputs.Textbox(lines=5, label="Input text")] | |
outputs = gr.outputs.Textbox(label="Input text") | |
title = "NLP Translation model from english to darija" | |
demo_status = "Demo is running on CPU" | |
description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}" | |
examples = [ | |
['English', 'Darija', 'Hi nice to meet you'] | |
] | |
gr.Interface(translation, | |
inputs, | |
outputs, | |
title=title, | |
description=description, | |
).launch() |