HakathonUm6p / app.py
Salmaelbarbori's picture
Create app.py
cd44bce
raw
history blame
1.32 kB
#!pip install gradio
import os
import torch
import gradio as gr
import time
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
def translation(text):
model_checkpoint = "bigscience/mt0-base"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
#inference
inputs = tokenizer("translate to darija : " + text, return_tensors="pt")
output = model.generate(**inputs)
output = tokenizer.decode(output.cpu().numpy()[0], skip_special_tokens=True)
return output
if __name__ == '__main__':
print('\tinit models')
#inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'),
inputs = [gr.inputs.Textbox(lines=5, label="Input text")]
outputs = gr.outputs.Textbox(label="Input text")
title = "NLP Translation model from english to darija"
demo_status = "Demo is running on CPU"
description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}"
examples = [
['English', 'Darija', 'Hi nice to meet you']
]
gr.Interface(translation,
inputs,
outputs,
title=title,
description=description,
).launch()