BLIP2 / app.py
Dongxu Li
add generation options.
8f68280
raw
history blame
5.43 kB
from io import BytesIO
import string
import gradio as gr
import requests
from PIL import Image
from utils import Endpoint
def encode_image(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
buffered.seek(0)
return buffered
def query_api(image, prompt, decoding_method, temperature, len_penalty, repetition_penalty):
url = endpoint.url
headers = {"User-Agent": "BLIP-2 HuggingFace Space"}
data = {
"prompt": prompt,
"use_nucleus_sampling": decoding_method == "Nucleus sampling",
"temperature": temperature,
"length_penalty": len_penalty,
"repetition_penalty": repetition_penalty,
}
image = encode_image(image)
files = {"image": image}
response = requests.post(url, data=data, files=files, headers=headers)
if response.status_code == 200:
return response.json()
else:
return "Error: " + response.text
def postprocess_output(output):
# if last character is not a punctuation, add a full stop
if not output[0][-1] in string.punctuation:
output[0] += "."
return output
def inference(
image,
text_input,
decoding_method,
temperature,
length_penalty,
repetition_penalty,
history=[],
):
text_input = text_input
history.append(text_input)
prompt = " ".join(history)
output = query_api(image, prompt, decoding_method, temperature, length_penalty, repetition_penalty)
output = postprocess_output(output)
history += output
chat = [
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
] # convert to tuples of list
return chat, history
# image source: https://m.facebook.com/112483753737319/photos/112489593736735/
endpoint = Endpoint()
examples = [
["house.png", "How could someone get out of the house?"],
[
"sunset.png",
"Write a romantic message that goes along this photo.",
],
]
# outputs = ["chatbot", "state"]
title = """<h1 align="center">BLIP-2</h1>"""
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p>
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>"
# iface = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples)
def reset_all(text_input, image_input, chatbot, history):
return "", None, None, []
def reset_chatbot(chatbot, history):
return None, []
with gr.Blocks() as iface:
state = gr.State([])
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil")
text_input = gr.Textbox(lines=2, label="Text input")
sampling = gr.Radio(
choices=["Beam search", "Nucleus sampling"],
value="Beam search",
label="Text Decoding Method",
interactive=True,
)
with gr.Row():
temperature = gr.Slider(
minimum=0.5,
maximum=1.0,
value=0.8,
interactive=True,
label="Temperature",
)
len_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=1.0,
step=0.5,
interactive=True,
label="Length Penalty",
)
rep_penalty = gr.Slider(
minimum=1.0,
maximum=10.0,
value=1.0,
step=0.5,
interactive=True,
label="Repetition Penalty",
)
with gr.Column():
chatbot = gr.Chatbot()
with gr.Row():
clear_button = gr.Button(value="Clear", interactive=True)
clear_button.click(
reset_all,
[text_input, image_input, chatbot, state],
[text_input, image_input, chatbot, state],
)
submit_button = gr.Button(value="Submit", interactive=True, variant="primary")
submit_button.click(
inference,
[
image_input,
text_input,
sampling,
temperature,
len_penalty,
state,
],
[chatbot, state],
)
image_input.change(reset_chatbot, [chatbot, state], [chatbot, state])
examples = gr.Examples(
examples=examples,
inputs=[image_input, text_input],
)
iface.queue(concurrency_count=1)
iface.launch(enable_queue=True, debug=True)