|
import spaces |
|
import argparse |
|
import os |
|
import json |
|
import torch |
|
import sys |
|
import time |
|
import importlib |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
from huggingface_hub import hf_hub_download |
|
|
|
from collections import OrderedDict |
|
import trimesh |
|
import gradio as gr |
|
from typing import Any |
|
from einops import rearrange |
|
|
|
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
sys.path.append(os.path.join(proj_dir)) |
|
|
|
import tempfile |
|
|
|
from apps.utils import * |
|
|
|
_TITLE = '''ModelMan''' |
|
_DESCRIPTION = ''' |
|
''' |
|
_CITE_ = r""" |
|
--- |
|
π **Citation** |
|
|
|
``` |
|
@article |
|
``` |
|
""" |
|
from apps.third_party.CRM.pipelines import TwoStagePipeline |
|
from apps.third_party.LGM.pipeline_mvdream import MVDreamPipeline |
|
from apps.third_party.Era3D.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline |
|
from apps.third_party.Era3D.data.single_image_dataset import SingleImageDataset |
|
|
|
import re |
|
import os |
|
import stat |
|
|
|
RD, WD, XD = 4, 2, 1 |
|
BNS = [RD, WD, XD] |
|
MDS = [ |
|
[stat.S_IRUSR, stat.S_IRGRP, stat.S_IROTH], |
|
[stat.S_IWUSR, stat.S_IWGRP, stat.S_IWOTH], |
|
[stat.S_IXUSR, stat.S_IXGRP, stat.S_IXOTH] |
|
] |
|
|
|
def chmod(path, mode): |
|
if isinstance(mode, int): |
|
mode = str(mode) |
|
if not re.match("^[0-7]{1,3}$", mode): |
|
raise Exception("mode does not conform to ^[0-7]{1,3}$ pattern") |
|
mode = "{0:0>3}".format(mode) |
|
mode_num = 0 |
|
for midx, m in enumerate(mode): |
|
for bnidx, bn in enumerate(BNS): |
|
if (int(m) & bn) > 0: |
|
mode_num += MDS[bnidx][midx] |
|
os.chmod(path, mode_num) |
|
|
|
chmod(f"{parent_dir}/apps/third_party/InstantMeshes", "777") |
|
|
|
device = None |
|
model = None |
|
cached_dir = None |
|
generator = None |
|
|
|
sys.path.append(f"apps/third_party/CRM") |
|
crm_pipeline = None |
|
|
|
sys.path.append(f"apps/third_party/LGM") |
|
imgaedream_pipeline = None |
|
|
|
sys.path.append(f"apps/third_party/Era3D") |
|
era3d_pipeline = None |
|
|
|
@spaces.GPU(duration=120) |
|
def gen_mvimg( |
|
mvimg_model, image, seed, guidance_scale, step, text, neg_text, elevation, backgroud_color |
|
): |
|
global device |
|
if seed == 0: |
|
seed = np.random.randint(1, 65535) |
|
global generator |
|
generator = torch.Generator(device) |
|
generator.manual_seed(seed) |
|
|
|
if mvimg_model == "CRM": |
|
global crm_pipeline |
|
crm_pipeline.set_seed(seed) |
|
background = Image.new("RGBA", image.size, (127, 127, 127)) |
|
image = Image.alpha_composite(background, image) |
|
mv_imgs = crm_pipeline( |
|
image, |
|
scale=guidance_scale, |
|
step=step |
|
)["stage1_images"] |
|
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0] |
|
|
|
elif mvimg_model == "ImageDream": |
|
global imagedream_pipeline |
|
background = Image.new("RGBA", image.size, backgroud_color) |
|
image = Image.alpha_composite(background, image) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) |
|
mv_imgs = imagedream_pipeline( |
|
text, |
|
image, |
|
negative_prompt=neg_text, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=step, |
|
elevation=elevation, |
|
generator=generator, |
|
) |
|
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0] |
|
|
|
elif mvimg_model == "Era3D": |
|
global era3d_pipeline |
|
era3d_pipeline.to(device) |
|
era3d_pipeline.unet.enable_xformers_memory_efficient_attention() |
|
era3d_pipeline.set_progress_bar_config(disable=True) |
|
|
|
crop_size = 420 |
|
batch = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white', |
|
crop_size=crop_size, single_image=image, prompt_embeds_path='apps/third_party/Era3D/data/fixed_prompt_embeds_6view')[0] |
|
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0) |
|
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W") |
|
|
|
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings'] |
|
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0) |
|
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") |
|
|
|
imgs_in = imgs_in.to(dtype=torch.float16) |
|
prompt_embeddings = prompt_embeddings.to(dtype=torch.float16) |
|
|
|
mv_imgs = era3d_pipeline( |
|
imgs_in, |
|
None, |
|
prompt_embeds=prompt_embeddings, |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=step, |
|
num_images_per_prompt=1, |
|
**{'eta': 1.0} |
|
).images |
|
return mv_imgs[6], mv_imgs[8], mv_imgs[9], mv_imgs[10] |
|
|
|
@spaces.GPU |
|
def image2mesh(view_front: np.ndarray, |
|
view_right: np.ndarray, |
|
view_back: np.ndarray, |
|
view_left: np.ndarray, |
|
more: bool = False, |
|
scheluder_name: str ="DDIMScheduler", |
|
guidance_scale: int = 7.5, |
|
steps: int = 50, |
|
seed: int = 4, |
|
octree_depth: int = 7): |
|
|
|
sample_inputs = { |
|
"mvimages": [[ |
|
Image.fromarray(view_front), |
|
Image.fromarray(view_right), |
|
Image.fromarray(view_back), |
|
Image.fromarray(view_left) |
|
]] |
|
} |
|
|
|
global model |
|
latents = model.sample( |
|
sample_inputs, |
|
sample_times=1, |
|
guidance_scale=guidance_scale, |
|
return_intermediates=False, |
|
steps=steps, |
|
seed=seed |
|
|
|
)[0] |
|
|
|
|
|
box_v = 1.1 |
|
mesh_outputs, _ = model.shape_model.extract_geometry( |
|
latents, |
|
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], |
|
octree_depth=octree_depth |
|
) |
|
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" |
|
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) |
|
|
|
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name |
|
mesh.export(filepath, include_normals=True) |
|
|
|
if 'Remesh' in more: |
|
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name |
|
print("Remeshing with Instant Meshes...") |
|
|
|
target_face_count = 2000 |
|
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}" |
|
os.system(command) |
|
del filepath |
|
filepath = remeshed_filepath |
|
|
|
|
|
return filepath |
|
|
|
if __name__=="__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir") |
|
parser.add_argument("--device", type=int, default=0) |
|
args = parser.parse_args() |
|
|
|
cached_dir = args.cached_dir |
|
os.makedirs(args.cached_dir, exist_ok=True) |
|
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") |
|
print(f"using device: {device}") |
|
|
|
|
|
background_choice = OrderedDict({ |
|
"Alpha as Mask": "Alpha as Mask", |
|
"Auto Remove Background": "Auto Remove Background", |
|
"Original Image": "Original Image", |
|
}) |
|
mvimg_model_config_list = [ |
|
"Era3D", |
|
"CRM", |
|
"ImageDream" |
|
] |
|
if "Era3D" in mvimg_model_config_list: |
|
|
|
|
|
|
|
era3d_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( |
|
'pengHTYX/MacLab-Era3D-512-6view', |
|
dtype=torch.float16, |
|
) |
|
|
|
|
|
|
|
if "CRM" in mvimg_model_config_list: |
|
stage1_config = OmegaConf.load(f"apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config |
|
stage1_sampler_config = stage1_config.sampler |
|
stage1_model_config = stage1_config.models |
|
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model") |
|
stage1_model_config.config = f"apps/third_party/CRM/" + stage1_model_config.config |
|
crm_pipeline = TwoStagePipeline( |
|
stage1_model_config, |
|
stage1_sampler_config, |
|
device=device, |
|
dtype=torch.float16 |
|
) |
|
if "ImageDream" in mvimg_model_config_list: |
|
imagedream_pipeline = MVDreamPipeline.from_pretrained( |
|
"ashawkey/imagedream-ipmv-diffusers", |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
) |
|
|
|
|
|
|
|
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/model.ckpt", repo_type="model") |
|
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/config.yaml", repo_type="model") |
|
|
|
|
|
scheluder_dict = OrderedDict({ |
|
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', |
|
|
|
|
|
}) |
|
|
|
|
|
custom_theme = gr.themes.Soft(primary_hue="blue").set( |
|
button_secondary_background_fill="*neutral_100", |
|
button_secondary_background_fill_hover="*neutral_200") |
|
custom_css = '''#disp_image { |
|
text-align: center; /* Horizontally center the content */ |
|
}''' |
|
|
|
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown('# ' + _TITLE) |
|
gr.Markdown(_DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
with gr.Column(): |
|
|
|
with gr.Row(): |
|
image_input = gr.Image( |
|
label="Image Input", |
|
image_mode="RGBA", |
|
sources="upload", |
|
type="pil", |
|
) |
|
run_btn = gr.Button('Generate', variant='primary', interactive=True) |
|
|
|
with gr.Row(): |
|
gr.Markdown('''''') |
|
with gr.Row(): |
|
seed = gr.Number(0, label='Seed', show_label=True) |
|
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=list(mvimg_model_config_list)) |
|
more = gr.CheckboxGroup(["Remesh"], label="More", show_label=False) |
|
|
|
with gr.Row(): |
|
|
|
text = gr.Textbox(label="Prompt (Opt.)", info="only works for ImageDream") |
|
|
|
with gr.Accordion('Advanced options', open=False): |
|
|
|
neg_text = gr.Textbox(label="Negative Prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate') |
|
|
|
elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0) |
|
|
|
with gr.Row(): |
|
gr.Examples( |
|
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")], |
|
inputs=[image_input], |
|
examples_per_page=8 |
|
) |
|
|
|
with gr.Column(scale=4): |
|
with gr.Row(): |
|
output_model_obj = gr.Model3D( |
|
label="Output Model (OBJ Format)", |
|
camera_position=(90.0, 90.0, 3.5), |
|
interactive=False, |
|
) |
|
|
|
|
|
|
|
with gr.Row(): |
|
view_front = gr.Image(label="Front", interactive=True, show_label=True) |
|
view_right = gr.Image(label="Right", interactive=True, show_label=True) |
|
view_back = gr.Image(label="Back", interactive=True, show_label=True) |
|
view_left = gr.Image(label="Left", interactive=True, show_label=True) |
|
|
|
with gr.Accordion('Advanced options', open=False): |
|
with gr.Row(equal_height=True): |
|
run_mv_btn = gr.Button('Only Generate 2D', interactive=True) |
|
run_3d_btn = gr.Button('Only Generate 3D', interactive=True) |
|
|
|
with gr.Accordion('Advanced options (2D)', open=False): |
|
with gr.Row(): |
|
foreground_ratio = gr.Slider( |
|
label="Foreground Ratio", |
|
minimum=0.5, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.05, |
|
) |
|
|
|
with gr.Row(): |
|
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) |
|
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) |
|
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True) |
|
|
|
|
|
with gr.Row(): |
|
mvimg_guidance_scale = gr.Number(value=3.0, minimum=1, maximum=10, label="2D Guidance Scale") |
|
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps") |
|
|
|
with gr.Accordion('Advanced options (3D)', open=False): |
|
with gr.Row(): |
|
guidance_scale = gr.Number(label="3D Guidance Scale", value=3.0, minimum=1.0, maximum=10.0) |
|
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps") |
|
|
|
with gr.Row(): |
|
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) |
|
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1) |
|
|
|
gr.Markdown(_CITE_) |
|
|
|
outputs = [output_model_obj] |
|
rmbg = RMBG(device) |
|
|
|
model = load_model(ckpt_path, config_path, device) |
|
|
|
run_btn.click(fn=check_input_image, inputs=[image_input] |
|
).success( |
|
fn=rmbg.run, |
|
inputs=[rmbg_type, image_input, foreground_ratio, background_choice, backgroud_color], |
|
outputs=[image_input] |
|
).success( |
|
fn=gen_mvimg, |
|
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation, backgroud_color], |
|
outputs=[view_front, view_right, view_back, view_left] |
|
).success( |
|
fn=image2mesh, |
|
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, steps, seed, octree_depth], |
|
outputs=outputs, |
|
api_name="generate_img2obj") |
|
run_mv_btn.click(fn=gen_mvimg, |
|
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation, backgroud_color], |
|
outputs=[view_front, view_right, view_back, view_left] |
|
) |
|
run_3d_btn.click(fn=image2mesh, |
|
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, steps, seed, octree_depth], |
|
outputs=outputs, |
|
api_name="generate_img2obj") |
|
|
|
demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |