Upload 2 files
Browse files- app.py +92 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
from langchain.chains import ConversationalRetrievalChain
|
5 |
+
from langchain.embeddings import OpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.llms.openai import OpenAIChat
|
8 |
+
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
11 |
+
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
|
15 |
+
LOCAL_VECTOR_STORE_DIR = Path(__file__).resolve().parent.joinpath("vector_store")
|
16 |
+
|
17 |
+
|
18 |
+
def load_documents():
|
19 |
+
loaders = [
|
20 |
+
PyPDFLoader(source_doc_url)
|
21 |
+
if source_doc_url.endswith(".pdf")
|
22 |
+
else WebBaseLoader(source_doc_url)
|
23 |
+
for source_doc_url in st.session_state.source_doc_urls
|
24 |
+
]
|
25 |
+
documents = []
|
26 |
+
for loader in loaders:
|
27 |
+
documents.extend(loader.load())
|
28 |
+
return documents
|
29 |
+
|
30 |
+
|
31 |
+
def split_documents(documents):
|
32 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
|
33 |
+
texts = text_splitter.split_documents(documents)
|
34 |
+
return texts
|
35 |
+
|
36 |
+
|
37 |
+
def embeddings_on_local_vectordb(texts):
|
38 |
+
vectordb = Chroma.from_documents(
|
39 |
+
texts,
|
40 |
+
embedding=OpenAIEmbeddings(),
|
41 |
+
persist_directory=LOCAL_VECTOR_STORE_DIR.as_posix(),
|
42 |
+
)
|
43 |
+
vectordb.persist()
|
44 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
45 |
+
return retriever
|
46 |
+
|
47 |
+
|
48 |
+
def query_llm(retriever, query):
|
49 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
50 |
+
llm=OpenAIChat(),
|
51 |
+
retriever=retriever,
|
52 |
+
return_source_documents=True,
|
53 |
+
)
|
54 |
+
result = qa_chain({"question": query, "chat_history": st.session_state.messages})
|
55 |
+
result = result["answer"]
|
56 |
+
st.session_state.messages.append((query, result))
|
57 |
+
return result
|
58 |
+
|
59 |
+
|
60 |
+
def input_fields():
|
61 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
62 |
+
st.session_state.source_doc_urls = [
|
63 |
+
url.strip() for url in st.sidebar.text_input("Source Document URLs").split(",")
|
64 |
+
]
|
65 |
+
|
66 |
+
|
67 |
+
def process_documents():
|
68 |
+
try:
|
69 |
+
documents = load_documents()
|
70 |
+
texts = split_documents(documents)
|
71 |
+
st.session_state.retriever = embeddings_on_local_vectordb(texts)
|
72 |
+
except Exception as e:
|
73 |
+
st.error(f"An error occurred: {e}")
|
74 |
+
|
75 |
+
|
76 |
+
def boot():
|
77 |
+
st.title("Enigma Chatbot")
|
78 |
+
input_fields()
|
79 |
+
st.sidebar.button("Submit Documents", on_click=process_documents)
|
80 |
+
if "messages" not in st.session_state:
|
81 |
+
st.session_state.messages = []
|
82 |
+
for message in st.session_state.messages:
|
83 |
+
st.chat_message("human").write(message[0])
|
84 |
+
st.chat_message("ai").write(message[1])
|
85 |
+
if query := st.chat_input():
|
86 |
+
st.chat_message("human").write(query)
|
87 |
+
response = query_llm(st.session_state.retriever, query)
|
88 |
+
st.chat_message("ai").write(response)
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
boot()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai==0.28
|
2 |
+
langchain==0.1.1
|
3 |
+
pypdf==4.0.0
|
4 |
+
chromadb==0.4.22
|