Spaces:
Sleeping
Sleeping
/* | |
Inference for Llama-2 Transformer model in pure C. | |
Example compile: (see README for more details) | |
$ gcc -O3 -o run run.c -lm | |
Then run with: | |
$ ./run | |
*/ | |
// ---------------------------------------------------------------------------- | |
// Transformer and RunState structs, and related memory management | |
typedef struct { | |
int dim; // transformer dimension | |
int hidden_dim; // for ffn layers | |
int n_layers; // number of layers | |
int n_heads; // number of query heads | |
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) | |
int vocab_size; // vocabulary size, usually 256 (byte-level) | |
int seq_len; // max sequence length | |
} Config; | |
typedef struct { | |
// token embedding table | |
float* token_embedding_table; // (vocab_size, dim) | |
// weights for rmsnorms | |
float* rms_att_weight; // (layer, dim) rmsnorm weights | |
float* rms_ffn_weight; // (layer, dim) | |
// weights for matmuls | |
float* wq; // (layer, dim, dim) | |
float* wk; // (layer, dim, dim) | |
float* wv; // (layer, dim, dim) | |
float* wo; // (layer, dim, dim) | |
// weights for ffn | |
float* w1; // (layer, hidden_dim, dim) | |
float* w2; // (layer, dim, hidden_dim) | |
float* w3; // (layer, hidden_dim, dim) | |
// final rmsnorm | |
float* rms_final_weight; // (dim,) | |
// freq_cis for RoPE relatively positional embeddings | |
float* freq_cis_real; // (seq_len, dim/2) | |
float* freq_cis_imag; // (seq_len, dim/2) | |
} TransformerWeights; | |
typedef struct { | |
// current wave of activations | |
float *x; // activation at current time stamp (dim,) | |
float *xb; // same, but inside a residual branch (dim,) | |
float *xb2; // an additional buffer just for convenience (dim,) | |
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,) | |
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,) | |
float *q; // query (dim,) | |
float *k; // key (dim,) | |
float *v; // value (dim,) | |
float *att; // buffer for scores/attention values (seq_len,) | |
float *logits; // output logits | |
// kv cache | |
float* key_cache; // (layer, seq_len, dim) | |
float* value_cache; // (layer, seq_len, dim) | |
} RunState; | |
void malloc_run_state(RunState* s, Config* p) { | |
// we calloc instead of malloc to keep valgrind happy | |
s->x = calloc(p->dim, sizeof(float)); | |
s->xb = calloc(p->dim, sizeof(float)); | |
s->xb2 = calloc(p->dim, sizeof(float)); | |
s->hb = calloc(p->hidden_dim, sizeof(float)); | |
s->hb2 = calloc(p->hidden_dim, sizeof(float)); | |
s->q = calloc(p->dim, sizeof(float)); | |
s->k = calloc(p->dim, sizeof(float)); | |
s->v = calloc(p->dim, sizeof(float)); | |
s->att = calloc(p->seq_len, sizeof(float)); | |
s->logits = calloc(p->vocab_size, sizeof(float)); | |
s->key_cache = calloc(p->n_layers * p->seq_len * p->dim, sizeof(float)); | |
s->value_cache = calloc(p->n_layers * p->seq_len * p->dim, sizeof(float)); | |
// ensure all mallocs went fine | |
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q | |
|| !s->k || !s->v || !s->att || !s->logits || !s->key_cache | |
|| !s->value_cache) { | |
printf("malloc failed!\n"); | |
exit(1); | |
} | |
} | |
void free_run_state(RunState* s) { | |
free(s->x); | |
free(s->xb); | |
free(s->xb2); | |
free(s->hb); | |
free(s->hb2); | |
free(s->q); | |
free(s->k); | |
free(s->v); | |
free(s->att); | |
free(s->logits); | |
free(s->key_cache); | |
free(s->value_cache); | |
} | |
void malloc_weights(TransformerWeights* w, Config* p) { | |
// we calloc instead of malloc to keep valgrind happy | |
w->token_embedding_table = calloc(p->vocab_size * p->dim, sizeof(float)); | |
w->rms_att_weight = calloc(p->n_layers * p->dim, sizeof(float)); | |
w->rms_ffn_weight = calloc(p->n_layers * p->dim, sizeof(float)); | |
w->wq = calloc(p->n_layers * p->dim * p->dim, sizeof(float)); | |
w->wk = calloc(p->n_layers * p->dim * p->dim, sizeof(float)); | |
w->wv = calloc(p->n_layers * p->dim * p->dim, sizeof(float)); | |
w->wo = calloc(p->n_layers * p->dim * p->dim, sizeof(float)); | |
w->w1 = calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float)); | |
w->w2 = calloc(p->n_layers * p->dim * p->hidden_dim, sizeof(float)); | |
w->w3 = calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float)); | |
w->rms_final_weight = calloc(p->dim, sizeof(float)); | |
w->freq_cis_real = calloc(p->seq_len * p->dim / 2, sizeof(float)); | |
w->freq_cis_imag = calloc(p->seq_len * p->dim / 2, sizeof(float)); | |
// ensure all mallocs went fine | |
if (!w->token_embedding_table || !w->rms_att_weight || !w->rms_ffn_weight | |
|| !w->wq || !w->wk || !w->wv || !w->wo || !w->w1 || !w->w2 || !w->w3 || | |
!w->rms_final_weight || !w->freq_cis_real || !w->freq_cis_imag) { | |
printf("malloc failed!\n"); | |
exit(1); | |
} | |
} | |
void free_weights(TransformerWeights* w) { | |
free(w->token_embedding_table); | |
free(w->rms_att_weight); | |
free(w->rms_ffn_weight); | |
free(w->wq); | |
free(w->wk); | |
free(w->wv); | |
free(w->wo); | |
free(w->w1); | |
free(w->w2); | |
free(w->w3); | |
free(w->rms_final_weight); | |
free(w->freq_cis_real); | |
free(w->freq_cis_imag); | |
} | |
// ---------------------------------------------------------------------------- | |
// initialization: read from checkpoint | |
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) { | |
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != p->vocab_size * p->dim) return 1; | |
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != p->n_layers * p->dim) return 1; | |
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1; | |
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1; | |
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1; | |
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1; | |
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != p->n_layers * p->dim) return 1; | |
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != p->n_layers * p->dim * p->hidden_dim) return 1; | |
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != p->n_layers * p->hidden_dim * p->dim) return 1; | |
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != p->n_layers * p->dim * p->hidden_dim) return 1; | |
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != p->dim) return 1; | |
int head_size = p->dim / p->n_heads; | |
if (fread(w->freq_cis_real, sizeof(float), p->seq_len * head_size / 2, f) != p->seq_len * head_size / 2) return 1; | |
if (fread(w->freq_cis_imag, sizeof(float), p->seq_len * head_size / 2, f) != p->seq_len * head_size / 2) return 1; | |
return 0; | |
} | |
// ---------------------------------------------------------------------------- | |
// neural net blocks | |
void accum(float *a, float *b, int size) { | |
for (int i = 0; i < size; i++) { | |
a[i] += b[i]; | |
} | |
} | |
void rmsnorm(float* o, float* x, float* weight, int size) { | |
// calculate sum of squares | |
float ss = 0.0f; | |
for (int j = 0; j < size; j++) { | |
ss += x[j] * x[j]; | |
} | |
ss /= size; | |
ss += 1e-5f; | |
ss = 1.0f / sqrt(ss); | |
// normalize and scale | |
for (int j = 0; j < size; j++) { | |
o[j] = weight[j] * (ss * x[j]); | |
} | |
} | |
void softmax(float* x, int size) { | |
// find max value (for numerical stability) | |
float max_val = x[0]; | |
for (int i = 1; i < size; i++) { | |
if (x[i] > max_val) { | |
max_val = x[i]; | |
} | |
} | |
// exp and sum | |
float sum = 0.0f; | |
for (int i = 0; i < size; i++) { | |
x[i] = exp(x[i] - max_val); | |
sum += x[i]; | |
} | |
// normalize | |
for (int i = 0; i < size; i++) { | |
x[i] /= sum; | |
} | |
} | |
void matmul(float* xout, float* x, float* w, int n, int d) { | |
// W (d,n) @ x (n,) -> xout (d,) | |
for (int i = 0; i < d; i++) { | |
float val = 0.0f; | |
for (int j = 0; j < n; j++) { | |
val += w[i * n + j] * x[j]; | |
} | |
xout[i] = val; | |
} | |
} | |
void transformer(int token, int pos, Config* p, RunState* s, TransformerWeights* w) { | |
// a few convenience variables | |
float *x = s->x; | |
int dim = p->dim; | |
int hidden_dim = p->hidden_dim; | |
int head_size = dim / p->n_heads; | |
// copy the token embedding into x | |
float* content_row = &(w->token_embedding_table[token * dim]); | |
memcpy(x, content_row, dim*sizeof(*x)); | |
// pluck out the "pos" row of freq_cis_real and freq_cis_imag | |
float* freq_cis_real_row = w->freq_cis_real + pos * head_size / 2; | |
float* freq_cis_imag_row = w->freq_cis_imag + pos * head_size / 2; | |
// forward all the layers | |
for(int l = 0; l < p->n_layers; l++) { | |
// attention rmsnorm | |
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim); | |
// qkv matmuls for this position | |
matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim); | |
matmul(s->k, s->xb, w->wk + l*dim*dim, dim, dim); | |
matmul(s->v, s->xb, w->wv + l*dim*dim, dim, dim); | |
// apply RoPE rotation to the q and k vectors for each head | |
for (int h = 0; h < p->n_heads; h++) { | |
// get the q and k vectors for this head | |
float* q = s->q + h * head_size; | |
float* k = s->k + h * head_size; | |
// rotate q and k by the freq_cis_real and freq_cis_imag | |
for (int i = 0; i < head_size; i+=2) { | |
float q0 = q[i]; | |
float q1 = q[i+1]; | |
float k0 = k[i]; | |
float k1 = k[i+1]; | |
float fcr = freq_cis_real_row[i/2]; | |
float fci = freq_cis_imag_row[i/2]; | |
q[i] = q0 * fcr - q1 * fci; | |
q[i+1] = q0 * fci + q1 * fcr; | |
k[i] = k0 * fcr - k1 * fci; | |
k[i+1] = k0 * fci + k1 * fcr; | |
} | |
} | |
// save key,value at this time step (pos) to our kv cache | |
int loff = l * p->seq_len * dim; // kv cache layer offset for convenience | |
float* key_cache_row = s->key_cache + loff + pos * dim; | |
float* value_cache_row = s->value_cache + loff + pos * dim; | |
memcpy(key_cache_row, s->k, dim*sizeof(*key_cache_row)); | |
memcpy(value_cache_row, s->v, dim*sizeof(*value_cache_row)); | |
// multihead attention. iterate over all heads | |
for (int h = 0; h < p->n_heads; h++) { | |
// get the query vector for this head | |
float* q = s->q + h * head_size; | |
// iterate over all timesteps, including the current one | |
for (int t = 0; t <= pos; t++) { | |
// get the key vector for this head and at this timestep | |
float* k = s->key_cache + loff + t * dim + h * head_size; | |
// calculate the attention score as the dot product of q and k | |
float score = 0.0f; | |
for (int i = 0; i < head_size; i++) { | |
score += q[i] * k[i]; | |
} | |
score /= sqrtf(head_size); | |
// save the score to the attention buffer | |
s->att[t] = score; | |
} | |
// softmax the scores to get attention weights, from 0..pos inclusively | |
softmax(s->att, pos + 1); | |
// weighted sum of the values, store back into xb | |
for (int i = 0; i < head_size; i++) { | |
float val = 0.0f; | |
for (int t = 0; t <= pos; t++) { | |
val += s->att[t] * s->value_cache[loff + t * dim + h * head_size + i]; // note bad locality | |
} | |
s->xb[h * head_size + i] = val; | |
} | |
} | |
// final matmul to get the output of the attention | |
matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim); | |
// residual connection back into x | |
accum(x, s->xb2, dim); | |
// ffn rmsnorm | |
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim); | |
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
// first calculate self.w1(x) and self.w3(x) | |
matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim); | |
matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim); | |
// F.silu; silu(x)=x*σ(x),where σ(x) is the logistic sigmoid | |
for (int i = 0; i < hidden_dim; i++) { | |
s->hb[i] = s->hb[i] * (1.0f / (1.0f + expf(-s->hb[i]))); | |
} | |
// elementwise multiply with w3(x) | |
for (int i = 0; i < hidden_dim; i++) { | |
s->hb[i] = s->hb[i] * s->hb2[i]; | |
} | |
// final matmul to get the output of the ffn | |
matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim); | |
// residual connection | |
accum(x, s->xb, dim); | |
} | |
// final rmsnorm | |
rmsnorm(x, x, w->rms_final_weight, dim); | |
// classifier into logits | |
matmul(s->logits, x, w->token_embedding_table, p->dim, p->vocab_size); | |
} | |
int sample(float* probabilities, int n) { | |
// sample index from probabilities, they must sum to 1 | |
float r = (float)rand() / (float)RAND_MAX; | |
float cdf = 0.0f; | |
for (int i = 0; i < n; i++) { | |
cdf += probabilities[i]; | |
if (r < cdf) { | |
return i; | |
} | |
} | |
return n - 1; // in case of rounding errors | |
} | |
int argmax(float* v, int n) { | |
// return argmax of v in elements 0..n | |
int max_i = 0; | |
float max_p = v[0]; | |
for (int i = 1; i < n; i++) { | |
if (v[i] > max_p) { | |
max_i = i; | |
max_p = v[i]; | |
} | |
} | |
return max_i; | |
} | |
// ---------------------------------------------------------------------------- | |
long time_in_ms() { | |
struct timeval time; | |
gettimeofday(&time, NULL); | |
return time.tv_sec * 1000 + time.tv_usec / 1000; | |
} | |
int main(int argc, char *argv[]) { | |
// poor man's C argparse | |
char *checkpoint = NULL; | |
float temperature = 0.9f; | |
// 'checkpoint' is necessary arg | |
if (argc < 2) { | |
printf("Usage: %s <checkpoint_file> [temperature] [seed]\n", argv[0]); | |
return 1; | |
} | |
checkpoint = argv[1]; | |
// temperature is optional | |
if (argc >= 3) { | |
temperature = atof(argv[2]); | |
} | |
// seed is optional | |
if (argc >= 4) { | |
unsigned int seed = atoi(argv[3]); | |
srand(seed); | |
} else { | |
time_t current_time; | |
time(¤t_time); | |
srand((unsigned int)current_time); | |
} | |
// read in the model.bin file | |
Config config; | |
TransformerWeights weights; | |
{ | |
FILE *file = fopen(checkpoint, "rb"); | |
if (!file) { | |
printf("Unable to open the checkpoint file %s!\n", checkpoint); | |
return 1; | |
} | |
// read in the config header | |
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; } | |
// read in the Transformer weights | |
malloc_weights(&weights, &config); | |
if(checkpoint_init_weights(&weights, &config, file)) { return 1; } | |
fclose(file); | |
} | |
// read in the tokenizer.bin file | |
char** vocab = (char**)malloc(config.vocab_size * sizeof(char*)); | |
{ | |
FILE *file = fopen("tokenizer.bin", "rb"); | |
if (!file) { | |
printf("Unable to open the tokenizer file tokenizer.bin! Run " | |
"python tokenizer.py to convert tokenizer.model -> tokenizer.bin\n"); | |
return 1; | |
} | |
int len; | |
for (int i = 0; i < config.vocab_size; i++) { | |
if(fread(&len, sizeof(int), 1, file) != 1) { return 1; } | |
vocab[i] = (char *)malloc(len + 1); | |
if(fread(vocab[i], len, 1, file) != 1) { return 1; } | |
vocab[i][len] = '\0'; // add the string terminating token | |
} | |
fclose(file); | |
} | |
// create and init the application RunState | |
RunState state; | |
malloc_run_state(&state, &config); | |
// the current position we are in | |
long start = time_in_ms(); | |
int next; | |
int token = 1; // 1 = BOS token in Llama-2 sentencepiece | |
int pos = 0; | |
while (pos < config.seq_len) { | |
// forward the transformer to get logits for the next token | |
transformer(token, pos, &config, &state, &weights); | |
// sample the next token | |
if(temperature == 0.0f) { | |
// greedy argmax sampling | |
next = argmax(state.logits, config.vocab_size); | |
} else { | |
// apply the temperature to the logits | |
for (int q=0; q<config.vocab_size; q++) { state.logits[q] /= temperature; } | |
// apply softmax to the logits to get the probabilities for next token | |
softmax(state.logits, config.vocab_size); | |
// we now want to sample from this distribution to get the next token | |
next = sample(state.logits, config.vocab_size); | |
} | |
printf("%s", vocab[next]); | |
fflush(stdout); | |
// advance forward | |
token = next; | |
pos++; | |
} | |
printf("\n"); | |
// report our achieved tok/s | |
long end = time_in_ms(); | |
printf("achieved tok/s: %f\n", config.seq_len / (double)(end-start)*1000); | |
// memory cleanup | |
free_run_state(&state); | |
free_weights(&weights); | |
for (int i = 0; i < config.vocab_size; i++) { free(vocab[i]); } | |
free(vocab); | |
return 0; | |
} | |