Ritori's picture
Upload folder using huggingface_hub
613e5d1
/*
Inference for Llama-2 Transformer model in pure C.
Example compile: (see README for more details)
$ gcc -O3 -o run run.c -lm
Then run with:
$ ./run
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <sys/time.h>
// ----------------------------------------------------------------------------
// Transformer and RunState structs, and related memory management
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
typedef struct {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls
float* wq; // (layer, dim, dim)
float* wk; // (layer, dim, dim)
float* wv; // (layer, dim, dim)
float* wo; // (layer, dim, dim)
// weights for ffn
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
float* rms_final_weight; // (dim,)
// freq_cis for RoPE relatively positional embeddings
float* freq_cis_real; // (seq_len, dim/2)
float* freq_cis_imag; // (seq_len, dim/2)
} TransformerWeights;
typedef struct {
// current wave of activations
float *x; // activation at current time stamp (dim,)
float *xb; // same, but inside a residual branch (dim,)
float *xb2; // an additional buffer just for convenience (dim,)
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,)
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
float *q; // query (dim,)
float *k; // key (dim,)
float *v; // value (dim,)
float *att; // buffer for scores/attention values (seq_len,)
float *logits; // output logits
// kv cache
float* key_cache; // (layer, seq_len, dim)
float* value_cache; // (layer, seq_len, dim)
} RunState;
void malloc_run_state(RunState* s, Config* p) {
// we calloc instead of malloc to keep valgrind happy
s->x = calloc(p->dim, sizeof(float));
s->xb = calloc(p->dim, sizeof(float));
s->xb2 = calloc(p->dim, sizeof(float));
s->hb = calloc(p->hidden_dim, sizeof(float));
s->hb2 = calloc(p->hidden_dim, sizeof(float));
s->q = calloc(p->dim, sizeof(float));
s->k = calloc(p->dim, sizeof(float));
s->v = calloc(p->dim, sizeof(float));
s->att = calloc(p->seq_len, sizeof(float));
s->logits = calloc(p->vocab_size, sizeof(float));
s->key_cache = calloc(p->n_layers * p->seq_len * p->dim, sizeof(float));
s->value_cache = calloc(p->n_layers * p->seq_len * p->dim, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q
|| !s->k || !s->v || !s->att || !s->logits || !s->key_cache
|| !s->value_cache) {
printf("malloc failed!\n");
exit(1);
}
}
void free_run_state(RunState* s) {
free(s->x);
free(s->xb);
free(s->xb2);
free(s->hb);
free(s->hb2);
free(s->q);
free(s->k);
free(s->v);
free(s->att);
free(s->logits);
free(s->key_cache);
free(s->value_cache);
}
void malloc_weights(TransformerWeights* w, Config* p) {
// we calloc instead of malloc to keep valgrind happy
w->token_embedding_table = calloc(p->vocab_size * p->dim, sizeof(float));
w->rms_att_weight = calloc(p->n_layers * p->dim, sizeof(float));
w->rms_ffn_weight = calloc(p->n_layers * p->dim, sizeof(float));
w->wq = calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wk = calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wv = calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->wo = calloc(p->n_layers * p->dim * p->dim, sizeof(float));
w->w1 = calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float));
w->w2 = calloc(p->n_layers * p->dim * p->hidden_dim, sizeof(float));
w->w3 = calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float));
w->rms_final_weight = calloc(p->dim, sizeof(float));
w->freq_cis_real = calloc(p->seq_len * p->dim / 2, sizeof(float));
w->freq_cis_imag = calloc(p->seq_len * p->dim / 2, sizeof(float));
// ensure all mallocs went fine
if (!w->token_embedding_table || !w->rms_att_weight || !w->rms_ffn_weight
|| !w->wq || !w->wk || !w->wv || !w->wo || !w->w1 || !w->w2 || !w->w3 ||
!w->rms_final_weight || !w->freq_cis_real || !w->freq_cis_imag) {
printf("malloc failed!\n");
exit(1);
}
}
void free_weights(TransformerWeights* w) {
free(w->token_embedding_table);
free(w->rms_att_weight);
free(w->rms_ffn_weight);
free(w->wq);
free(w->wk);
free(w->wv);
free(w->wo);
free(w->w1);
free(w->w2);
free(w->w3);
free(w->rms_final_weight);
free(w->freq_cis_real);
free(w->freq_cis_imag);
}
// ----------------------------------------------------------------------------
// initialization: read from checkpoint
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) {
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != p->vocab_size * p->dim) return 1;
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != p->n_layers * p->dim) return 1;
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1;
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1;
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1;
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != p->n_layers * p->dim * p->dim) return 1;
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != p->n_layers * p->dim) return 1;
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != p->n_layers * p->dim * p->hidden_dim) return 1;
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != p->n_layers * p->hidden_dim * p->dim) return 1;
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != p->n_layers * p->dim * p->hidden_dim) return 1;
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != p->dim) return 1;
int head_size = p->dim / p->n_heads;
if (fread(w->freq_cis_real, sizeof(float), p->seq_len * head_size / 2, f) != p->seq_len * head_size / 2) return 1;
if (fread(w->freq_cis_imag, sizeof(float), p->seq_len * head_size / 2, f) != p->seq_len * head_size / 2) return 1;
return 0;
}
// ----------------------------------------------------------------------------
// neural net blocks
void accum(float *a, float *b, int size) {
for (int i = 0; i < size; i++) {
a[i] += b[i];
}
}
void rmsnorm(float* o, float* x, float* weight, int size) {
// calculate sum of squares
float ss = 0.0f;
for (int j = 0; j < size; j++) {
ss += x[j] * x[j];
}
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrt(ss);
// normalize and scale
for (int j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
void softmax(float* x, int size) {
// find max value (for numerical stability)
float max_val = x[0];
for (int i = 1; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
float sum = 0.0f;
for (int i = 0; i < size; i++) {
x[i] = exp(x[i] - max_val);
sum += x[i];
}
// normalize
for (int i = 0; i < size; i++) {
x[i] /= sum;
}
}
void matmul(float* xout, float* x, float* w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
#pragma omp parallel for
for (int i = 0; i < d; i++) {
float val = 0.0f;
for (int j = 0; j < n; j++) {
val += w[i * n + j] * x[j];
}
xout[i] = val;
}
}
void transformer(int token, int pos, Config* p, RunState* s, TransformerWeights* w) {
// a few convenience variables
float *x = s->x;
int dim = p->dim;
int hidden_dim = p->hidden_dim;
int head_size = dim / p->n_heads;
// copy the token embedding into x
float* content_row = &(w->token_embedding_table[token * dim]);
memcpy(x, content_row, dim*sizeof(*x));
// pluck out the "pos" row of freq_cis_real and freq_cis_imag
float* freq_cis_real_row = w->freq_cis_real + pos * head_size / 2;
float* freq_cis_imag_row = w->freq_cis_imag + pos * head_size / 2;
// forward all the layers
for(int l = 0; l < p->n_layers; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim);
// qkv matmuls for this position
matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim);
matmul(s->k, s->xb, w->wk + l*dim*dim, dim, dim);
matmul(s->v, s->xb, w->wv + l*dim*dim, dim, dim);
// apply RoPE rotation to the q and k vectors for each head
for (int h = 0; h < p->n_heads; h++) {
// get the q and k vectors for this head
float* q = s->q + h * head_size;
float* k = s->k + h * head_size;
// rotate q and k by the freq_cis_real and freq_cis_imag
for (int i = 0; i < head_size; i+=2) {
float q0 = q[i];
float q1 = q[i+1];
float k0 = k[i];
float k1 = k[i+1];
float fcr = freq_cis_real_row[i/2];
float fci = freq_cis_imag_row[i/2];
q[i] = q0 * fcr - q1 * fci;
q[i+1] = q0 * fci + q1 * fcr;
k[i] = k0 * fcr - k1 * fci;
k[i+1] = k0 * fci + k1 * fcr;
}
}
// save key,value at this time step (pos) to our kv cache
int loff = l * p->seq_len * dim; // kv cache layer offset for convenience
float* key_cache_row = s->key_cache + loff + pos * dim;
float* value_cache_row = s->value_cache + loff + pos * dim;
memcpy(key_cache_row, s->k, dim*sizeof(*key_cache_row));
memcpy(value_cache_row, s->v, dim*sizeof(*value_cache_row));
// multihead attention. iterate over all heads
for (int h = 0; h < p->n_heads; h++) {
// get the query vector for this head
float* q = s->q + h * head_size;
// iterate over all timesteps, including the current one
for (int t = 0; t <= pos; t++) {
// get the key vector for this head and at this timestep
float* k = s->key_cache + loff + t * dim + h * head_size;
// calculate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to the attention buffer
s->att[t] = score;
}
// softmax the scores to get attention weights, from 0..pos inclusively
softmax(s->att, pos + 1);
// weighted sum of the values, store back into xb
for (int i = 0; i < head_size; i++) {
float val = 0.0f;
for (int t = 0; t <= pos; t++) {
val += s->att[t] * s->value_cache[loff + t * dim + h * head_size + i]; // note bad locality
}
s->xb[h * head_size + i] = val;
}
}
// final matmul to get the output of the attention
matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim);
// residual connection back into x
accum(x, s->xb2, dim);
// ffn rmsnorm
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim);
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x))
// first calculate self.w1(x) and self.w3(x)
matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim);
// F.silu; silu(x)=x*σ(x),where σ(x) is the logistic sigmoid
for (int i = 0; i < hidden_dim; i++) {
s->hb[i] = s->hb[i] * (1.0f / (1.0f + expf(-s->hb[i])));
}
// elementwise multiply with w3(x)
for (int i = 0; i < hidden_dim; i++) {
s->hb[i] = s->hb[i] * s->hb2[i];
}
// final matmul to get the output of the ffn
matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim);
// residual connection
accum(x, s->xb, dim);
}
// final rmsnorm
rmsnorm(x, x, w->rms_final_weight, dim);
// classifier into logits
matmul(s->logits, x, w->token_embedding_table, p->dim, p->vocab_size);
}
int sample(float* probabilities, int n) {
// sample index from probabilities, they must sum to 1
float r = (float)rand() / (float)RAND_MAX;
float cdf = 0.0f;
for (int i = 0; i < n; i++) {
cdf += probabilities[i];
if (r < cdf) {
return i;
}
}
return n - 1; // in case of rounding errors
}
int argmax(float* v, int n) {
// return argmax of v in elements 0..n
int max_i = 0;
float max_p = v[0];
for (int i = 1; i < n; i++) {
if (v[i] > max_p) {
max_i = i;
max_p = v[i];
}
}
return max_i;
}
// ----------------------------------------------------------------------------
long time_in_ms() {
struct timeval time;
gettimeofday(&time, NULL);
return time.tv_sec * 1000 + time.tv_usec / 1000;
}
int main(int argc, char *argv[]) {
// poor man's C argparse
char *checkpoint = NULL;
float temperature = 0.9f;
// 'checkpoint' is necessary arg
if (argc < 2) {
printf("Usage: %s <checkpoint_file> [temperature] [seed]\n", argv[0]);
return 1;
}
checkpoint = argv[1];
// temperature is optional
if (argc >= 3) {
temperature = atof(argv[2]);
}
// seed is optional
if (argc >= 4) {
unsigned int seed = atoi(argv[3]);
srand(seed);
} else {
time_t current_time;
time(&current_time);
srand((unsigned int)current_time);
}
// read in the model.bin file
Config config;
TransformerWeights weights;
{
FILE *file = fopen(checkpoint, "rb");
if (!file) {
printf("Unable to open the checkpoint file %s!\n", checkpoint);
return 1;
}
// read in the config header
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
// read in the Transformer weights
malloc_weights(&weights, &config);
if(checkpoint_init_weights(&weights, &config, file)) { return 1; }
fclose(file);
}
// read in the tokenizer.bin file
char** vocab = (char**)malloc(config.vocab_size * sizeof(char*));
{
FILE *file = fopen("tokenizer.bin", "rb");
if (!file) {
printf("Unable to open the tokenizer file tokenizer.bin! Run "
"python tokenizer.py to convert tokenizer.model -> tokenizer.bin\n");
return 1;
}
int len;
for (int i = 0; i < config.vocab_size; i++) {
if(fread(&len, sizeof(int), 1, file) != 1) { return 1; }
vocab[i] = (char *)malloc(len + 1);
if(fread(vocab[i], len, 1, file) != 1) { return 1; }
vocab[i][len] = '\0'; // add the string terminating token
}
fclose(file);
}
// create and init the application RunState
RunState state;
malloc_run_state(&state, &config);
// the current position we are in
long start = time_in_ms();
int next;
int token = 1; // 1 = BOS token in Llama-2 sentencepiece
int pos = 0;
while (pos < config.seq_len) {
// forward the transformer to get logits for the next token
transformer(token, pos, &config, &state, &weights);
// sample the next token
if(temperature == 0.0f) {
// greedy argmax sampling
next = argmax(state.logits, config.vocab_size);
} else {
// apply the temperature to the logits
for (int q=0; q<config.vocab_size; q++) { state.logits[q] /= temperature; }
// apply softmax to the logits to get the probabilities for next token
softmax(state.logits, config.vocab_size);
// we now want to sample from this distribution to get the next token
next = sample(state.logits, config.vocab_size);
}
printf("%s", vocab[next]);
fflush(stdout);
// advance forward
token = next;
pos++;
}
printf("\n");
// report our achieved tok/s
long end = time_in_ms();
printf("achieved tok/s: %f\n", config.seq_len / (double)(end-start)*1000);
// memory cleanup
free_run_state(&state);
free_weights(&weights);
for (int i = 0; i < config.vocab_size; i++) { free(vocab[i]); }
free(vocab);
return 0;
}