Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,888 Bytes
8f558df 21fcfe6 3890132 0e31dfe 21fcfe6 8f558df 21fcfe6 02558d9 a533ef3 425e364 a533ef3 02558d9 69d7044 8f558df 69d7044 3d8d74a 69d7044 02558d9 35095c7 02558d9 21fcfe6 d0c2593 8f558df 21fcfe6 8f558df 21fcfe6 d0c2593 21fcfe6 d0c2593 21fcfe6 d0c2593 02558d9 21fcfe6 8f558df dcf6d05 02558d9 dcf6d05 13775ff dcf6d05 2406bfd dcf6d05 df30ad6 8f558df d0c2593 8f558df 7890490 3d8d74a 8f558df 21fcfe6 8f558df 755339c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import subprocess
from datetime import datetime
import numpy as np
import os
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# models = {
# "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
# }
def array_to_image_path(image_array):
# Convert numpy array to PIL Image
img = Image.fromarray(np.uint8(image_array))
img.thumbnail((1024, 1024))
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
# Save the image
img.save(filename)
# Get the full path of the saved image
full_path = os.path.abspath(filename)
return full_path
models = {
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
}
processors = {
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)
}
DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)"
kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
@spaces.GPU
def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-7B-Instruct"):
image_path = array_to_image_path(image)
print(image_path)
model = models[model_id]
processor = processors[model_id]
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
image = Image.fromarray(image).convert("RGB")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": text_input},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Qwen2-VL-7B Input"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct")
text_input = gr.Textbox(label="Question")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
demo.queue(api_open=False)
demo.launch(debug=True) |