File size: 2,751 Bytes
7e98abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e150b93
 
 
 
7e98abb
 
 
 
 
 
 
e3d6a90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import json
import os

import pandas as pd

from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results


def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
    """Creates a dataframe from all the individual experiment results"""
    raw_data = get_raw_eval_results(results_path, requests_path)
    all_data_json = [v.to_dict() for v in raw_data]

    df = pd.DataFrame.from_records(all_data_json)
    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)

    if df.shape[0]:
        df.to_csv("latest_results.tsv", sep="\t")

    df = df[cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    return raw_data, df


# def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
#     """Creates the different dataframes for the evaluation queues requestes"""
#     entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
#     all_evals = []

#     for entry in entries:
#         if ".json" in entry:
#             file_path = os.path.join(save_path, entry)
#             with open(file_path) as fp:
#                 data = json.load(fp)

#             data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
#             data[EvalQueueColumn.revision.name] = data.get("revision", "main")

#             all_evals.append(data)
#         elif ".md" not in entry:
#             # this is a folder
#             sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
#             for sub_entry in sub_entries:
#                 file_path = os.path.join(save_path, entry, sub_entry)
#                 with open(file_path) as fp:
#                     data = json.load(fp)

#                 data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
#                 data[EvalQueueColumn.revision.name] = data.get("revision", "main")
#                 all_evals.append(data)

#     pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
#     running_list = [e for e in all_evals if e["status"] == "RUNNING"]
#     finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
#     df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
#     df_running = pd.DataFrame.from_records(running_list, columns=cols)
#     df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
#     return df_finished[cols], df_running[cols], df_pending[cols]