File size: 13,966 Bytes
7e98abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3b6497
7e98abb
 
e3d6a90
7e98abb
 
 
 
 
 
e3b6497
b901e2a
 
 
 
 
 
 
 
 
 
 
 
 
7e98abb
e3d6a90
7e98abb
e3b6497
 
 
 
 
 
7e98abb
 
 
 
 
 
 
 
e3b6497
 
 
 
 
7e98abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3b6497
7e98abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e7dfb
 
 
 
 
7e98abb
 
 
 
 
 
 
45517cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e98abb
 
61e7dfb
 
45517cb
 
 
61e7dfb
 
 
7e98abb
 
 
 
 
 
 
 
 
 
 
 
 
45517cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e98abb
 
 
 
e3b6497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e98abb
 
 
 
 
 
 
 
 
 
 
 
56451ad
7e98abb
e3b6497
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)


# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO,
#         local_dir=EVAL_REQUESTS_PATH,
#         repo_type="dataset",
#         tqdm_class=None,
#         etag_timeout=30,
#         token=TOKEN,
#     )
# except Exception:
#     restart_space()

try:
    print("Saving results locally at:", EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO,
        local_dir=EVAL_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()


raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()

# (
#     finished_eval_queue_df,
#     running_eval_queue_df,
#     pending_eval_queue_df,
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    type_query: list,
    precision_query: str,
    size_query: list,
    show_deleted: bool,
    query: str,
):
    filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns)
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    if show_deleted:
        filtered_df = df
    else:  # Show only still on the hub models
        filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    type_emoji = [t[0] for t in type_query]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    filtered_df = filtered_df.loc[mask]

    return filtered_df


shown_columns = [
    c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden and not c.never_hidden
]


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            # with gr.Row():
            #     # with gr.Column():
            #     # with gr.Row():
            #     search_bar = gr.Textbox(
            #         placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
            #         show_label=False,
            #         elem_id="search-bar",
            #     )

            #     # with gr.Row():
            #     #     shown_columns = gr.CheckboxGroup(
            #     #         choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
            #     #         value=[
            #     #             c.name
            #     #             for c in fields(AutoEvalColumn)
            #     #             if c.displayed_by_default and not c.hidden and not c.never_hidden
            #     #         ],
            #     #         label="Select columns to show",
            #     #         elem_id="column-select",
            #     #         interactive=True,
            #     #     )
            #     # with gr.Row():
            #     #     deleted_models_visibility = gr.Checkbox(
            #     #         value=False, label="Show gated/private/deleted models", interactive=True
            #     #     )
            #     # with gr.Column(min_width=320):
            #     # with gr.Box(elem_id="box-filter"):
            #     filter_columns_type = gr.CheckboxGroup(
            #         label="Model types",
            #         choices=[t.to_str() for t in ModelType],
            #         value=[t.to_str() for t in ModelType],
            #         interactive=True,
            #         elem_id="filter-columns-type",
            #     )
            #     # filter_columns_precision = gr.CheckboxGroup(
            #     #     label="Precision",
            #     #     choices=[i.value.name for i in Precision],
            #     #     value=[i.value.name for i in Precision],
            #     #     interactive=True,
            #     #     elem_id="filter-columns-precision",
            #     # )
            #     filter_columns_size = gr.CheckboxGroup(
            #         label="Model sizes (in billions of parameters)",
            #         choices=list(NUMERIC_INTERVALS.keys()),
            #         value=list(NUMERIC_INTERVALS.keys()),
            #         interactive=True,
            #         elem_id="filter-columns-size",
            #     )

            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df[
                    [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
                ].applymap(
                    lambda x: x if isinstance(x, str) or isinstance(x, float) else round(x["value"], 2)
                ),  # ,# ] + shown_columns],
                headers=[
                    c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default
                ],  ##, if c.never_hidden] + shown_columns,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            # search_bar.submit(
            #     update_table,
            #     [
            #         hidden_leaderboard_table_for_search,
            #         # None,
            #         filter_columns_type,
            #         # filter_columns_precision,
            #         filter_columns_size,
            #         # None,
            #         search_bar,
            #     ],
            #     leaderboard_table,
            # )
            # for selector in [
            #     # shown_columns,
            #     filter_columns_type,
            #     # filter_columns_precision,
            #     filter_columns_size,
            #     # deleted_models_visibility,
            # ]:
            #     selector.change(
            #         update_table,
            #         [
            #             hidden_leaderboard_table_for_search,
            #             # None,
            #             filter_columns_type,
            #             # filter_columns_precision,
            #             filter_columns_size,
            #             # None,
            #             search_bar,
            #         ],
            #         leaderboard_table,
            #         queue=True,
            #     )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
        #     with gr.Column():
        #         with gr.Row():
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

        #         with gr.Column():
        #             with gr.Accordion(
        #                 f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     finished_eval_table = gr.components.Dataframe(
        #                         value=finished_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )
        #             with gr.Accordion(
        #                 f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     running_eval_table = gr.components.Dataframe(
        #                         value=running_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )

        #             with gr.Accordion(
        #                 f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     pending_eval_table = gr.components.Dataframe(
        #                         value=pending_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )
        #     with gr.Row():
        #         gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

        #     with gr.Row():
        #         with gr.Column():
        #             model_name_textbox = gr.Textbox(label="Model name")
        #             revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
        #             model_type = gr.Dropdown(
        #                 choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
        #                 label="Model type",
        #                 multiselect=False,
        #                 value=None,
        #                 interactive=True,
        #             )

        #         with gr.Column():
        #             precision = gr.Dropdown(
        #                 choices=[i.value.name for i in Precision if i != Precision.Unknown],
        #                 label="Precision",
        #                 multiselect=False,
        #                 value="float16",
        #                 interactive=True,
        #             )
        #             weight_type = gr.Dropdown(
        #                 choices=[i.value.name for i in WeightType],
        #                 label="Weights type",
        #                 multiselect=False,
        #                 value="Original",
        #                 interactive=True,
        #             )
        #             base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

        #     submit_button = gr.Button("Submit Eval")
        #     submission_result = gr.Markdown()
        #     submit_button.click(
        #         add_new_eval,
        #         [
        #             model_name_textbox,
        #             base_model_name_textbox,
        #             revision_name_textbox,
        #             precision,
        #             weight_type,
        #             model_type,
        #         ],
        #         submission_result,
        #     )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()