Spaces:
Running
Running
Realcat
commited on
Commit
•
8ff3c52
1
Parent(s):
8888dc8
add: api
Browse files- api/client.py +147 -0
- api/server.py +135 -0
- format.sh +3 -3
- requirements.txt +1 -0
- test_app_cli.py +1 -4
- ui/viz.py +5 -7
api/client.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import pickle
|
3 |
+
import time
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import requests
|
8 |
+
from loguru import logger
|
9 |
+
|
10 |
+
API_URL_MATCH = "http://127.0.0.1:8001/v1/match"
|
11 |
+
API_URL_EXTRACT = "http://127.0.0.1:8001/v1/extract"
|
12 |
+
API_URL_EXTRACT_V2 = "http://127.0.0.1:8001/v2/extract"
|
13 |
+
|
14 |
+
|
15 |
+
def send_generate_request(path0: str, path1: str) -> Dict[str, np.ndarray]:
|
16 |
+
"""
|
17 |
+
Send a request to the API to generate a match between two images.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path0 (str): The path to the first image.
|
21 |
+
path1 (str): The path to the second image.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
Dict[str, np.ndarray]: A dictionary containing the generated matches.
|
25 |
+
The keys are "keypoints0", "keypoints1", "matches0", and "matches1",
|
26 |
+
and the values are ndarrays of shape (N, 2), (N, 2), (N, 2), and
|
27 |
+
(N, 2), respectively.
|
28 |
+
"""
|
29 |
+
files = {"image0": open(path0, "rb"), "image1": open(path1, "rb")}
|
30 |
+
try:
|
31 |
+
response = requests.post(API_URL_MATCH, files=files)
|
32 |
+
pred = {}
|
33 |
+
if response.status_code == 200:
|
34 |
+
pred = response.json()
|
35 |
+
for key in list(pred.keys()):
|
36 |
+
pred[key] = np.array(pred[key])
|
37 |
+
else:
|
38 |
+
print(
|
39 |
+
f"Error: Response code {response.status_code} - {response.text}"
|
40 |
+
)
|
41 |
+
finally:
|
42 |
+
files["image0"].close()
|
43 |
+
files["image1"].close()
|
44 |
+
return pred
|
45 |
+
|
46 |
+
|
47 |
+
def send_generate_request1(path0: str) -> Dict[str, np.ndarray]:
|
48 |
+
"""
|
49 |
+
Send a request to the API to extract features from an image.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
path0 (str): The path to the image.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
Dict[str, np.ndarray]: A dictionary containing the extracted features.
|
56 |
+
The keys are "keypoints", "descriptors", and "scores", and the
|
57 |
+
values are ndarrays of shape (N, 2), (N, 128), and (N,),
|
58 |
+
respectively.
|
59 |
+
"""
|
60 |
+
files = {"image": open(path0, "rb")}
|
61 |
+
try:
|
62 |
+
response = requests.post(API_URL_EXTRACT, files=files)
|
63 |
+
pred: Dict[str, np.ndarray] = {}
|
64 |
+
if response.status_code == 200:
|
65 |
+
pred = response.json()
|
66 |
+
for key in list(pred.keys()):
|
67 |
+
pred[key] = np.array(pred[key])
|
68 |
+
else:
|
69 |
+
print(
|
70 |
+
f"Error: Response code {response.status_code} - {response.text}"
|
71 |
+
)
|
72 |
+
finally:
|
73 |
+
files["image"].close()
|
74 |
+
return pred
|
75 |
+
|
76 |
+
|
77 |
+
def send_generate_request2(image_path: str) -> Dict[str, np.ndarray]:
|
78 |
+
"""
|
79 |
+
Send a request to the API to extract features from an image.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
image_path (str): The path to the image.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
Dict[str, np.ndarray]: A dictionary containing the extracted features.
|
86 |
+
The keys are "keypoints", "descriptors", and "scores", and the
|
87 |
+
values are ndarrays of shape (N, 2), (N, 128), and (N,), respectively.
|
88 |
+
"""
|
89 |
+
data = {
|
90 |
+
"image_path": image_path,
|
91 |
+
"max_keypoints": 1024,
|
92 |
+
"reference_points": [[0.0, 0.0], [1.0, 1.0]],
|
93 |
+
}
|
94 |
+
pred = {}
|
95 |
+
try:
|
96 |
+
response = requests.post(API_URL_EXTRACT_V2, json=data)
|
97 |
+
pred: Dict[str, np.ndarray] = {}
|
98 |
+
if response.status_code == 200:
|
99 |
+
pred = response.json()
|
100 |
+
for key in list(pred.keys()):
|
101 |
+
pred[key] = np.array(pred[key])
|
102 |
+
else:
|
103 |
+
print(
|
104 |
+
f"Error: Response code {response.status_code} - {response.text}"
|
105 |
+
)
|
106 |
+
except Exception as e:
|
107 |
+
print(f"An error occurred: {e}")
|
108 |
+
return pred
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
parser = argparse.ArgumentParser(
|
113 |
+
description="Send text to stable audio server and receive generated audio."
|
114 |
+
)
|
115 |
+
parser.add_argument(
|
116 |
+
"--image0",
|
117 |
+
required=False,
|
118 |
+
help="Path for the file's melody",
|
119 |
+
default="../datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg",
|
120 |
+
)
|
121 |
+
parser.add_argument(
|
122 |
+
"--image1",
|
123 |
+
required=False,
|
124 |
+
help="Path for the file's melody",
|
125 |
+
default="../datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg",
|
126 |
+
)
|
127 |
+
args = parser.parse_args()
|
128 |
+
for i in range(10):
|
129 |
+
t1 = time.time()
|
130 |
+
preds = send_generate_request(args.image0, args.image1)
|
131 |
+
t2 = time.time()
|
132 |
+
logger.info(f"Time cost1: {(t2 - t1)} seconds")
|
133 |
+
|
134 |
+
for i in range(10):
|
135 |
+
t1 = time.time()
|
136 |
+
preds = send_generate_request1(args.image0)
|
137 |
+
t2 = time.time()
|
138 |
+
logger.info(f"Time cost2: {(t2 - t1)} seconds")
|
139 |
+
|
140 |
+
for i in range(10):
|
141 |
+
t1 = time.time()
|
142 |
+
preds = send_generate_request2(args.image0)
|
143 |
+
t2 = time.time()
|
144 |
+
logger.info(f"Time cost2: {(t2 - t1)} seconds")
|
145 |
+
|
146 |
+
with open("preds.pkl", "wb") as f:
|
147 |
+
pickle.dump(preds, f)
|
api/server.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# server.py
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import uvicorn
|
8 |
+
from fastapi import FastAPI, File, UploadFile
|
9 |
+
from fastapi.responses import JSONResponse
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
sys.path.append("..")
|
13 |
+
from pydantic import BaseModel
|
14 |
+
|
15 |
+
from ui.api import ImageMatchingAPI
|
16 |
+
from ui.utils import DEVICE
|
17 |
+
|
18 |
+
|
19 |
+
class ImageInfo(BaseModel):
|
20 |
+
image_path: str
|
21 |
+
max_keypoints: int
|
22 |
+
reference_points: list
|
23 |
+
|
24 |
+
|
25 |
+
class ImageMatchingService:
|
26 |
+
def __init__(self, conf: dict, device: str):
|
27 |
+
self.api = ImageMatchingAPI(conf=conf, device=device)
|
28 |
+
self.app = FastAPI()
|
29 |
+
self.register_routes()
|
30 |
+
|
31 |
+
def register_routes(self):
|
32 |
+
@self.app.post("/v1/match")
|
33 |
+
async def match(
|
34 |
+
image0: UploadFile = File(...), image1: UploadFile = File(...)
|
35 |
+
):
|
36 |
+
try:
|
37 |
+
image0_array = self.load_image(image0)
|
38 |
+
image1_array = self.load_image(image1)
|
39 |
+
|
40 |
+
output = self.api(image0_array, image1_array)
|
41 |
+
|
42 |
+
skip_keys = ["image0_orig", "image1_orig"]
|
43 |
+
pred = self.filter_output(output, skip_keys)
|
44 |
+
|
45 |
+
return JSONResponse(content=pred)
|
46 |
+
except Exception as e:
|
47 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
48 |
+
|
49 |
+
@self.app.post("/v1/extract")
|
50 |
+
async def extract(image: UploadFile = File(...)):
|
51 |
+
try:
|
52 |
+
image_array = self.load_image(image)
|
53 |
+
output = self.api.extract(image_array)
|
54 |
+
skip_keys = ["descriptors", "image", "image_orig"]
|
55 |
+
pred = self.filter_output(output, skip_keys)
|
56 |
+
return JSONResponse(content=pred)
|
57 |
+
except Exception as e:
|
58 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
59 |
+
|
60 |
+
@self.app.post("/v2/extract")
|
61 |
+
async def extract_v2(image_path: ImageInfo):
|
62 |
+
img_path = image_path.image_path
|
63 |
+
try:
|
64 |
+
safe_path = Path(img_path).resolve(strict=False)
|
65 |
+
image_array = self.load_image(str(safe_path))
|
66 |
+
output = self.api.extract(image_array)
|
67 |
+
skip_keys = ["descriptors", "image", "image_orig"]
|
68 |
+
pred = self.filter_output(output, skip_keys)
|
69 |
+
return JSONResponse(content=pred)
|
70 |
+
except Exception as e:
|
71 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
72 |
+
|
73 |
+
def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray:
|
74 |
+
"""
|
75 |
+
Reads an image from a file path or an UploadFile object.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
file_path: A file path or an UploadFile object.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
A numpy array representing the image.
|
82 |
+
"""
|
83 |
+
if isinstance(file_path, str):
|
84 |
+
file_path = Path(file_path).resolve(strict=False)
|
85 |
+
else:
|
86 |
+
file_path = file_path.file
|
87 |
+
with Image.open(file_path) as img:
|
88 |
+
image_array = np.array(img)
|
89 |
+
return image_array
|
90 |
+
|
91 |
+
def filter_output(self, output: dict, skip_keys: list) -> dict:
|
92 |
+
pred = {}
|
93 |
+
for key, value in output.items():
|
94 |
+
if key in skip_keys:
|
95 |
+
continue
|
96 |
+
if isinstance(value, np.ndarray):
|
97 |
+
pred[key] = value.tolist()
|
98 |
+
return pred
|
99 |
+
|
100 |
+
def run(self, host: str = "0.0.0.0", port: int = 8001):
|
101 |
+
uvicorn.run(self.app, host=host, port=port)
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
conf = {
|
106 |
+
"feature": {
|
107 |
+
"output": "feats-superpoint-n4096-rmax1600",
|
108 |
+
"model": {
|
109 |
+
"name": "superpoint",
|
110 |
+
"nms_radius": 3,
|
111 |
+
"max_keypoints": 4096,
|
112 |
+
"keypoint_threshold": 0.005,
|
113 |
+
},
|
114 |
+
"preprocessing": {
|
115 |
+
"grayscale": True,
|
116 |
+
"force_resize": True,
|
117 |
+
"resize_max": 1600,
|
118 |
+
"width": 640,
|
119 |
+
"height": 480,
|
120 |
+
"dfactor": 8,
|
121 |
+
},
|
122 |
+
},
|
123 |
+
"matcher": {
|
124 |
+
"output": "matches-NN-mutual",
|
125 |
+
"model": {
|
126 |
+
"name": "nearest_neighbor",
|
127 |
+
"do_mutual_check": True,
|
128 |
+
"match_threshold": 0.2,
|
129 |
+
},
|
130 |
+
},
|
131 |
+
"dense": False,
|
132 |
+
}
|
133 |
+
|
134 |
+
service = ImageMatchingService(conf=conf, device=DEVICE)
|
135 |
+
service.run()
|
format.sh
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
python -m flake8 ui/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
2 |
-
python -m isort ui/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
3 |
-
python -m black ui/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
|
|
1 |
+
python -m flake8 ui/*.py api/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
2 |
+
python -m isort ui/*.py api/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
3 |
+
python -m black ui/*.py api/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
|
requirements.txt
CHANGED
@@ -36,3 +36,4 @@ torchvision==0.19.0
|
|
36 |
roma #dust3r
|
37 |
tqdm
|
38 |
yacs
|
|
|
|
36 |
roma #dust3r
|
37 |
tqdm
|
38 |
yacs
|
39 |
+
fastapi
|
test_app_cli.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
import cv2
|
2 |
-
import warnings
|
3 |
-
import numpy as np
|
4 |
-
from pathlib import Path
|
5 |
from hloc import logger
|
6 |
from ui.utils import (
|
7 |
get_matcher_zoo,
|
@@ -71,7 +68,7 @@ def test_one():
|
|
71 |
"dense": False,
|
72 |
}
|
73 |
api = ImageMatchingAPI(conf=conf, device=DEVICE)
|
74 |
-
api(image0, image1)
|
75 |
log_path = ROOT / "experiments" / "one"
|
76 |
log_path.mkdir(exist_ok=True, parents=True)
|
77 |
api.visualize(log_path=log_path)
|
|
|
1 |
import cv2
|
|
|
|
|
|
|
2 |
from hloc import logger
|
3 |
from ui.utils import (
|
4 |
get_matcher_zoo,
|
|
|
68 |
"dense": False,
|
69 |
}
|
70 |
api = ImageMatchingAPI(conf=conf, device=DEVICE)
|
71 |
+
pred = api(image0, image1)
|
72 |
log_path = ROOT / "experiments" / "one"
|
73 |
log_path.mkdir(exist_ok=True, parents=True)
|
74 |
api.visualize(log_path=log_path)
|
ui/viz.py
CHANGED
@@ -10,6 +10,10 @@ import seaborn as sns
|
|
10 |
|
11 |
from hloc.utils.viz import add_text, plot_keypoints
|
12 |
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def plot_images(
|
15 |
imgs: List[np.ndarray],
|
@@ -232,11 +236,6 @@ def error_colormap(
|
|
232 |
)
|
233 |
|
234 |
|
235 |
-
np.random.seed(1995)
|
236 |
-
color_map = np.arange(100)
|
237 |
-
np.random.shuffle(color_map)
|
238 |
-
|
239 |
-
|
240 |
def fig2im(fig: matplotlib.figure.Figure) -> np.ndarray:
|
241 |
"""
|
242 |
Convert a matplotlib figure to a numpy array with RGB values.
|
@@ -284,9 +283,8 @@ def draw_matches_core(
|
|
284 |
The figure as a numpy array with shape (height, width, 3) and dtype uint8
|
285 |
containing the RGB values of the figure.
|
286 |
"""
|
287 |
-
thr = 5e-4
|
288 |
thr = 0.5
|
289 |
-
color = error_colormap(conf, thr, alpha=0.1)
|
290 |
text = [
|
291 |
# "image name",
|
292 |
f"#Matches: {len(mkpts0)}",
|
|
|
10 |
|
11 |
from hloc.utils.viz import add_text, plot_keypoints
|
12 |
|
13 |
+
np.random.seed(1995)
|
14 |
+
color_map = np.arange(100)
|
15 |
+
np.random.shuffle(color_map)
|
16 |
+
|
17 |
|
18 |
def plot_images(
|
19 |
imgs: List[np.ndarray],
|
|
|
236 |
)
|
237 |
|
238 |
|
|
|
|
|
|
|
|
|
|
|
239 |
def fig2im(fig: matplotlib.figure.Figure) -> np.ndarray:
|
240 |
"""
|
241 |
Convert a matplotlib figure to a numpy array with RGB values.
|
|
|
283 |
The figure as a numpy array with shape (height, width, 3) and dtype uint8
|
284 |
containing the RGB values of the figure.
|
285 |
"""
|
|
|
286 |
thr = 0.5
|
287 |
+
color = error_colormap(1 - conf, thr, alpha=0.1)
|
288 |
text = [
|
289 |
# "image name",
|
290 |
f"#Matches: {len(mkpts0)}",
|