RamAnanth1 commited on
Commit
6e6f20a
1 Parent(s): cb69642

Delete ldm

Browse files
ldm/models/autoencoder.py DELETED
@@ -1,219 +0,0 @@
1
- import torch
2
- import pytorch_lightning as pl
3
- import torch.nn.functional as F
4
- from contextlib import contextmanager
5
-
6
- from ldm.modules.diffusionmodules.model import Encoder, Decoder
7
- from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
8
-
9
- from ldm.util import instantiate_from_config
10
- from ldm.modules.ema import LitEma
11
-
12
-
13
- class AutoencoderKL(pl.LightningModule):
14
- def __init__(self,
15
- ddconfig,
16
- lossconfig,
17
- embed_dim,
18
- ckpt_path=None,
19
- ignore_keys=[],
20
- image_key="image",
21
- colorize_nlabels=None,
22
- monitor=None,
23
- ema_decay=None,
24
- learn_logvar=False
25
- ):
26
- super().__init__()
27
- self.learn_logvar = learn_logvar
28
- self.image_key = image_key
29
- self.encoder = Encoder(**ddconfig)
30
- self.decoder = Decoder(**ddconfig)
31
- self.loss = instantiate_from_config(lossconfig)
32
- assert ddconfig["double_z"]
33
- self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
34
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
35
- self.embed_dim = embed_dim
36
- if colorize_nlabels is not None:
37
- assert type(colorize_nlabels)==int
38
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
39
- if monitor is not None:
40
- self.monitor = monitor
41
-
42
- self.use_ema = ema_decay is not None
43
- if self.use_ema:
44
- self.ema_decay = ema_decay
45
- assert 0. < ema_decay < 1.
46
- self.model_ema = LitEma(self, decay=ema_decay)
47
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
48
-
49
- if ckpt_path is not None:
50
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
51
-
52
- def init_from_ckpt(self, path, ignore_keys=list()):
53
- sd = torch.load(path, map_location="cpu")["state_dict"]
54
- keys = list(sd.keys())
55
- for k in keys:
56
- for ik in ignore_keys:
57
- if k.startswith(ik):
58
- print("Deleting key {} from state_dict.".format(k))
59
- del sd[k]
60
- self.load_state_dict(sd, strict=False)
61
- print(f"Restored from {path}")
62
-
63
- @contextmanager
64
- def ema_scope(self, context=None):
65
- if self.use_ema:
66
- self.model_ema.store(self.parameters())
67
- self.model_ema.copy_to(self)
68
- if context is not None:
69
- print(f"{context}: Switched to EMA weights")
70
- try:
71
- yield None
72
- finally:
73
- if self.use_ema:
74
- self.model_ema.restore(self.parameters())
75
- if context is not None:
76
- print(f"{context}: Restored training weights")
77
-
78
- def on_train_batch_end(self, *args, **kwargs):
79
- if self.use_ema:
80
- self.model_ema(self)
81
-
82
- def encode(self, x):
83
- h = self.encoder(x)
84
- moments = self.quant_conv(h)
85
- posterior = DiagonalGaussianDistribution(moments)
86
- return posterior
87
-
88
- def decode(self, z):
89
- z = self.post_quant_conv(z)
90
- dec = self.decoder(z)
91
- return dec
92
-
93
- def forward(self, input, sample_posterior=True):
94
- posterior = self.encode(input)
95
- if sample_posterior:
96
- z = posterior.sample()
97
- else:
98
- z = posterior.mode()
99
- dec = self.decode(z)
100
- return dec, posterior
101
-
102
- def get_input(self, batch, k):
103
- x = batch[k]
104
- if len(x.shape) == 3:
105
- x = x[..., None]
106
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
107
- return x
108
-
109
- def training_step(self, batch, batch_idx, optimizer_idx):
110
- inputs = self.get_input(batch, self.image_key)
111
- reconstructions, posterior = self(inputs)
112
-
113
- if optimizer_idx == 0:
114
- # train encoder+decoder+logvar
115
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
116
- last_layer=self.get_last_layer(), split="train")
117
- self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
118
- self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
119
- return aeloss
120
-
121
- if optimizer_idx == 1:
122
- # train the discriminator
123
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
124
- last_layer=self.get_last_layer(), split="train")
125
-
126
- self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
127
- self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
128
- return discloss
129
-
130
- def validation_step(self, batch, batch_idx):
131
- log_dict = self._validation_step(batch, batch_idx)
132
- with self.ema_scope():
133
- log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
134
- return log_dict
135
-
136
- def _validation_step(self, batch, batch_idx, postfix=""):
137
- inputs = self.get_input(batch, self.image_key)
138
- reconstructions, posterior = self(inputs)
139
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
140
- last_layer=self.get_last_layer(), split="val"+postfix)
141
-
142
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
143
- last_layer=self.get_last_layer(), split="val"+postfix)
144
-
145
- self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
146
- self.log_dict(log_dict_ae)
147
- self.log_dict(log_dict_disc)
148
- return self.log_dict
149
-
150
- def configure_optimizers(self):
151
- lr = self.learning_rate
152
- ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
153
- self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
154
- if self.learn_logvar:
155
- print(f"{self.__class__.__name__}: Learning logvar")
156
- ae_params_list.append(self.loss.logvar)
157
- opt_ae = torch.optim.Adam(ae_params_list,
158
- lr=lr, betas=(0.5, 0.9))
159
- opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
160
- lr=lr, betas=(0.5, 0.9))
161
- return [opt_ae, opt_disc], []
162
-
163
- def get_last_layer(self):
164
- return self.decoder.conv_out.weight
165
-
166
- @torch.no_grad()
167
- def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
168
- log = dict()
169
- x = self.get_input(batch, self.image_key)
170
- x = x.to(self.device)
171
- if not only_inputs:
172
- xrec, posterior = self(x)
173
- if x.shape[1] > 3:
174
- # colorize with random projection
175
- assert xrec.shape[1] > 3
176
- x = self.to_rgb(x)
177
- xrec = self.to_rgb(xrec)
178
- log["samples"] = self.decode(torch.randn_like(posterior.sample()))
179
- log["reconstructions"] = xrec
180
- if log_ema or self.use_ema:
181
- with self.ema_scope():
182
- xrec_ema, posterior_ema = self(x)
183
- if x.shape[1] > 3:
184
- # colorize with random projection
185
- assert xrec_ema.shape[1] > 3
186
- xrec_ema = self.to_rgb(xrec_ema)
187
- log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
188
- log["reconstructions_ema"] = xrec_ema
189
- log["inputs"] = x
190
- return log
191
-
192
- def to_rgb(self, x):
193
- assert self.image_key == "segmentation"
194
- if not hasattr(self, "colorize"):
195
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
196
- x = F.conv2d(x, weight=self.colorize)
197
- x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
198
- return x
199
-
200
-
201
- class IdentityFirstStage(torch.nn.Module):
202
- def __init__(self, *args, vq_interface=False, **kwargs):
203
- self.vq_interface = vq_interface
204
- super().__init__()
205
-
206
- def encode(self, x, *args, **kwargs):
207
- return x
208
-
209
- def decode(self, x, *args, **kwargs):
210
- return x
211
-
212
- def quantize(self, x, *args, **kwargs):
213
- if self.vq_interface:
214
- return x, None, [None, None, None]
215
- return x
216
-
217
- def forward(self, x, *args, **kwargs):
218
- return x
219
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/diffusion/ddim.py DELETED
@@ -1,336 +0,0 @@
1
- """SAMPLING ONLY."""
2
-
3
- import torch
4
- import numpy as np
5
- from tqdm import tqdm
6
-
7
- from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
-
9
-
10
- class DDIMSampler(object):
11
- def __init__(self, model, schedule="linear", **kwargs):
12
- super().__init__()
13
- self.model = model
14
- self.ddpm_num_timesteps = model.num_timesteps
15
- self.schedule = schedule
16
-
17
- def register_buffer(self, name, attr):
18
- if type(attr) == torch.Tensor:
19
- if attr.device != torch.device("cuda"):
20
- attr = attr.to(torch.device("cuda"))
21
- setattr(self, name, attr)
22
-
23
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
24
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
25
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
26
- alphas_cumprod = self.model.alphas_cumprod
27
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
28
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
29
-
30
- self.register_buffer('betas', to_torch(self.model.betas))
31
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
32
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
33
-
34
- # calculations for diffusion q(x_t | x_{t-1}) and others
35
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
36
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
37
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
38
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
39
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
40
-
41
- # ddim sampling parameters
42
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
43
- ddim_timesteps=self.ddim_timesteps,
44
- eta=ddim_eta,verbose=verbose)
45
- self.register_buffer('ddim_sigmas', ddim_sigmas)
46
- self.register_buffer('ddim_alphas', ddim_alphas)
47
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
48
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
49
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
50
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
51
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
52
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
53
-
54
- @torch.no_grad()
55
- def sample(self,
56
- S,
57
- batch_size,
58
- shape,
59
- conditioning=None,
60
- callback=None,
61
- normals_sequence=None,
62
- img_callback=None,
63
- quantize_x0=False,
64
- eta=0.,
65
- mask=None,
66
- x0=None,
67
- temperature=1.,
68
- noise_dropout=0.,
69
- score_corrector=None,
70
- corrector_kwargs=None,
71
- verbose=True,
72
- x_T=None,
73
- log_every_t=100,
74
- unconditional_guidance_scale=1.,
75
- unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
76
- dynamic_threshold=None,
77
- ucg_schedule=None,
78
- **kwargs
79
- ):
80
- if conditioning is not None:
81
- if isinstance(conditioning, dict):
82
- ctmp = conditioning[list(conditioning.keys())[0]]
83
- while isinstance(ctmp, list): ctmp = ctmp[0]
84
- cbs = ctmp.shape[0]
85
- if cbs != batch_size:
86
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
-
88
- elif isinstance(conditioning, list):
89
- for ctmp in conditioning:
90
- if ctmp.shape[0] != batch_size:
91
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
92
-
93
- else:
94
- if conditioning.shape[0] != batch_size:
95
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
96
-
97
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
98
- # sampling
99
- C, H, W = shape
100
- size = (batch_size, C, H, W)
101
- print(f'Data shape for DDIM sampling is {size}, eta {eta}')
102
-
103
- samples, intermediates = self.ddim_sampling(conditioning, size,
104
- callback=callback,
105
- img_callback=img_callback,
106
- quantize_denoised=quantize_x0,
107
- mask=mask, x0=x0,
108
- ddim_use_original_steps=False,
109
- noise_dropout=noise_dropout,
110
- temperature=temperature,
111
- score_corrector=score_corrector,
112
- corrector_kwargs=corrector_kwargs,
113
- x_T=x_T,
114
- log_every_t=log_every_t,
115
- unconditional_guidance_scale=unconditional_guidance_scale,
116
- unconditional_conditioning=unconditional_conditioning,
117
- dynamic_threshold=dynamic_threshold,
118
- ucg_schedule=ucg_schedule
119
- )
120
- return samples, intermediates
121
-
122
- @torch.no_grad()
123
- def ddim_sampling(self, cond, shape,
124
- x_T=None, ddim_use_original_steps=False,
125
- callback=None, timesteps=None, quantize_denoised=False,
126
- mask=None, x0=None, img_callback=None, log_every_t=100,
127
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
128
- unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
129
- ucg_schedule=None):
130
- device = self.model.betas.device
131
- b = shape[0]
132
- if x_T is None:
133
- img = torch.randn(shape, device=device)
134
- else:
135
- img = x_T
136
-
137
- if timesteps is None:
138
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
139
- elif timesteps is not None and not ddim_use_original_steps:
140
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
141
- timesteps = self.ddim_timesteps[:subset_end]
142
-
143
- intermediates = {'x_inter': [img], 'pred_x0': [img]}
144
- time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
145
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
146
- print(f"Running DDIM Sampling with {total_steps} timesteps")
147
-
148
- iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
149
-
150
- for i, step in enumerate(iterator):
151
- index = total_steps - i - 1
152
- ts = torch.full((b,), step, device=device, dtype=torch.long)
153
-
154
- if mask is not None:
155
- assert x0 is not None
156
- img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
157
- img = img_orig * mask + (1. - mask) * img
158
-
159
- if ucg_schedule is not None:
160
- assert len(ucg_schedule) == len(time_range)
161
- unconditional_guidance_scale = ucg_schedule[i]
162
-
163
- outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
164
- quantize_denoised=quantize_denoised, temperature=temperature,
165
- noise_dropout=noise_dropout, score_corrector=score_corrector,
166
- corrector_kwargs=corrector_kwargs,
167
- unconditional_guidance_scale=unconditional_guidance_scale,
168
- unconditional_conditioning=unconditional_conditioning,
169
- dynamic_threshold=dynamic_threshold)
170
- img, pred_x0 = outs
171
- if callback: callback(i)
172
- if img_callback: img_callback(pred_x0, i)
173
-
174
- if index % log_every_t == 0 or index == total_steps - 1:
175
- intermediates['x_inter'].append(img)
176
- intermediates['pred_x0'].append(pred_x0)
177
-
178
- return img, intermediates
179
-
180
- @torch.no_grad()
181
- def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
182
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
183
- unconditional_guidance_scale=1., unconditional_conditioning=None,
184
- dynamic_threshold=None):
185
- b, *_, device = *x.shape, x.device
186
-
187
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
- model_output = self.model.apply_model(x, t, c)
189
- else:
190
- x_in = torch.cat([x] * 2)
191
- t_in = torch.cat([t] * 2)
192
- if isinstance(c, dict):
193
- assert isinstance(unconditional_conditioning, dict)
194
- c_in = dict()
195
- for k in c:
196
- if isinstance(c[k], list):
197
- c_in[k] = [torch.cat([
198
- unconditional_conditioning[k][i],
199
- c[k][i]]) for i in range(len(c[k]))]
200
- else:
201
- c_in[k] = torch.cat([
202
- unconditional_conditioning[k],
203
- c[k]])
204
- elif isinstance(c, list):
205
- c_in = list()
206
- assert isinstance(unconditional_conditioning, list)
207
- for i in range(len(c)):
208
- c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
209
- else:
210
- c_in = torch.cat([unconditional_conditioning, c])
211
- model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
212
- model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
213
-
214
- if self.model.parameterization == "v":
215
- e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
216
- else:
217
- e_t = model_output
218
-
219
- if score_corrector is not None:
220
- assert self.model.parameterization == "eps", 'not implemented'
221
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
222
-
223
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
224
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
225
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
226
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
227
- # select parameters corresponding to the currently considered timestep
228
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
229
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
230
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
231
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
232
-
233
- # current prediction for x_0
234
- if self.model.parameterization != "v":
235
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
236
- else:
237
- pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
238
-
239
- if quantize_denoised:
240
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
241
-
242
- if dynamic_threshold is not None:
243
- raise NotImplementedError()
244
-
245
- # direction pointing to x_t
246
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
247
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
248
- if noise_dropout > 0.:
249
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
250
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
251
- return x_prev, pred_x0
252
-
253
- @torch.no_grad()
254
- def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
255
- unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
256
- num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
257
-
258
- assert t_enc <= num_reference_steps
259
- num_steps = t_enc
260
-
261
- if use_original_steps:
262
- alphas_next = self.alphas_cumprod[:num_steps]
263
- alphas = self.alphas_cumprod_prev[:num_steps]
264
- else:
265
- alphas_next = self.ddim_alphas[:num_steps]
266
- alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
267
-
268
- x_next = x0
269
- intermediates = []
270
- inter_steps = []
271
- for i in tqdm(range(num_steps), desc='Encoding Image'):
272
- t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
273
- if unconditional_guidance_scale == 1.:
274
- noise_pred = self.model.apply_model(x_next, t, c)
275
- else:
276
- assert unconditional_conditioning is not None
277
- e_t_uncond, noise_pred = torch.chunk(
278
- self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
279
- torch.cat((unconditional_conditioning, c))), 2)
280
- noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
281
-
282
- xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
283
- weighted_noise_pred = alphas_next[i].sqrt() * (
284
- (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
285
- x_next = xt_weighted + weighted_noise_pred
286
- if return_intermediates and i % (
287
- num_steps // return_intermediates) == 0 and i < num_steps - 1:
288
- intermediates.append(x_next)
289
- inter_steps.append(i)
290
- elif return_intermediates and i >= num_steps - 2:
291
- intermediates.append(x_next)
292
- inter_steps.append(i)
293
- if callback: callback(i)
294
-
295
- out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
296
- if return_intermediates:
297
- out.update({'intermediates': intermediates})
298
- return x_next, out
299
-
300
- @torch.no_grad()
301
- def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
302
- # fast, but does not allow for exact reconstruction
303
- # t serves as an index to gather the correct alphas
304
- if use_original_steps:
305
- sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
306
- sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
307
- else:
308
- sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
309
- sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
310
-
311
- if noise is None:
312
- noise = torch.randn_like(x0)
313
- return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
314
- extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
315
-
316
- @torch.no_grad()
317
- def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
318
- use_original_steps=False, callback=None):
319
-
320
- timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
321
- timesteps = timesteps[:t_start]
322
-
323
- time_range = np.flip(timesteps)
324
- total_steps = timesteps.shape[0]
325
- print(f"Running DDIM Sampling with {total_steps} timesteps")
326
-
327
- iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
328
- x_dec = x_latent
329
- for i, step in enumerate(iterator):
330
- index = total_steps - i - 1
331
- ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
332
- x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
333
- unconditional_guidance_scale=unconditional_guidance_scale,
334
- unconditional_conditioning=unconditional_conditioning)
335
- if callback: callback(i)
336
- return x_dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/models/diffusion/ddpm.py DELETED
@@ -1,1797 +0,0 @@
1
- """
2
- wild mixture of
3
- https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
- https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
- https://github.com/CompVis/taming-transformers
6
- -- merci
7
- """
8
-
9
- import torch
10
- import torch.nn as nn
11
- import numpy as np
12
- import pytorch_lightning as pl
13
- from torch.optim.lr_scheduler import LambdaLR
14
- from einops import rearrange, repeat
15
- from contextlib import contextmanager, nullcontext
16
- from functools import partial
17
- import itertools
18
- from tqdm import tqdm
19
- from torchvision.utils import make_grid
20
- from pytorch_lightning.utilities.distributed import rank_zero_only
21
- from omegaconf import ListConfig
22
-
23
- from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
24
- from ldm.modules.ema import LitEma
25
- from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
26
- from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
27
- from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
28
- from ldm.models.diffusion.ddim import DDIMSampler
29
-
30
-
31
- __conditioning_keys__ = {'concat': 'c_concat',
32
- 'crossattn': 'c_crossattn',
33
- 'adm': 'y'}
34
-
35
-
36
- def disabled_train(self, mode=True):
37
- """Overwrite model.train with this function to make sure train/eval mode
38
- does not change anymore."""
39
- return self
40
-
41
-
42
- def uniform_on_device(r1, r2, shape, device):
43
- return (r1 - r2) * torch.rand(*shape, device=device) + r2
44
-
45
-
46
- class DDPM(pl.LightningModule):
47
- # classic DDPM with Gaussian diffusion, in image space
48
- def __init__(self,
49
- unet_config,
50
- timesteps=1000,
51
- beta_schedule="linear",
52
- loss_type="l2",
53
- ckpt_path=None,
54
- ignore_keys=[],
55
- load_only_unet=False,
56
- monitor="val/loss",
57
- use_ema=True,
58
- first_stage_key="image",
59
- image_size=256,
60
- channels=3,
61
- log_every_t=100,
62
- clip_denoised=True,
63
- linear_start=1e-4,
64
- linear_end=2e-2,
65
- cosine_s=8e-3,
66
- given_betas=None,
67
- original_elbo_weight=0.,
68
- v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
69
- l_simple_weight=1.,
70
- conditioning_key=None,
71
- parameterization="eps", # all assuming fixed variance schedules
72
- scheduler_config=None,
73
- use_positional_encodings=False,
74
- learn_logvar=False,
75
- logvar_init=0.,
76
- make_it_fit=False,
77
- ucg_training=None,
78
- reset_ema=False,
79
- reset_num_ema_updates=False,
80
- ):
81
- super().__init__()
82
- assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
83
- self.parameterization = parameterization
84
- print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
85
- self.cond_stage_model = None
86
- self.clip_denoised = clip_denoised
87
- self.log_every_t = log_every_t
88
- self.first_stage_key = first_stage_key
89
- self.image_size = image_size # try conv?
90
- self.channels = channels
91
- self.use_positional_encodings = use_positional_encodings
92
- self.model = DiffusionWrapper(unet_config, conditioning_key)
93
- count_params(self.model, verbose=True)
94
- self.use_ema = use_ema
95
- if self.use_ema:
96
- self.model_ema = LitEma(self.model)
97
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
98
-
99
- self.use_scheduler = scheduler_config is not None
100
- if self.use_scheduler:
101
- self.scheduler_config = scheduler_config
102
-
103
- self.v_posterior = v_posterior
104
- self.original_elbo_weight = original_elbo_weight
105
- self.l_simple_weight = l_simple_weight
106
-
107
- if monitor is not None:
108
- self.monitor = monitor
109
- self.make_it_fit = make_it_fit
110
- if reset_ema: assert exists(ckpt_path)
111
- if ckpt_path is not None:
112
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
113
- if reset_ema:
114
- assert self.use_ema
115
- print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
116
- self.model_ema = LitEma(self.model)
117
- if reset_num_ema_updates:
118
- print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
119
- assert self.use_ema
120
- self.model_ema.reset_num_updates()
121
-
122
- self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
123
- linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
124
-
125
- self.loss_type = loss_type
126
-
127
- self.learn_logvar = learn_logvar
128
- logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
129
- if self.learn_logvar:
130
- self.logvar = nn.Parameter(self.logvar, requires_grad=True)
131
- else:
132
- self.register_buffer('logvar', logvar)
133
-
134
- self.ucg_training = ucg_training or dict()
135
- if self.ucg_training:
136
- self.ucg_prng = np.random.RandomState()
137
-
138
- def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
139
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
140
- if exists(given_betas):
141
- betas = given_betas
142
- else:
143
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
144
- cosine_s=cosine_s)
145
- alphas = 1. - betas
146
- alphas_cumprod = np.cumprod(alphas, axis=0)
147
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
148
-
149
- timesteps, = betas.shape
150
- self.num_timesteps = int(timesteps)
151
- self.linear_start = linear_start
152
- self.linear_end = linear_end
153
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
154
-
155
- to_torch = partial(torch.tensor, dtype=torch.float32)
156
-
157
- self.register_buffer('betas', to_torch(betas))
158
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
159
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
160
-
161
- # calculations for diffusion q(x_t | x_{t-1}) and others
162
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
163
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
164
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
165
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
166
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
167
-
168
- # calculations for posterior q(x_{t-1} | x_t, x_0)
169
- posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
170
- 1. - alphas_cumprod) + self.v_posterior * betas
171
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
172
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
173
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
174
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
175
- self.register_buffer('posterior_mean_coef1', to_torch(
176
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
177
- self.register_buffer('posterior_mean_coef2', to_torch(
178
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
179
-
180
- if self.parameterization == "eps":
181
- lvlb_weights = self.betas ** 2 / (
182
- 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
183
- elif self.parameterization == "x0":
184
- lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
185
- elif self.parameterization == "v":
186
- lvlb_weights = torch.ones_like(self.betas ** 2 / (
187
- 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
188
- else:
189
- raise NotImplementedError("mu not supported")
190
- lvlb_weights[0] = lvlb_weights[1]
191
- self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
192
- assert not torch.isnan(self.lvlb_weights).all()
193
-
194
- @contextmanager
195
- def ema_scope(self, context=None):
196
- if self.use_ema:
197
- self.model_ema.store(self.model.parameters())
198
- self.model_ema.copy_to(self.model)
199
- if context is not None:
200
- print(f"{context}: Switched to EMA weights")
201
- try:
202
- yield None
203
- finally:
204
- if self.use_ema:
205
- self.model_ema.restore(self.model.parameters())
206
- if context is not None:
207
- print(f"{context}: Restored training weights")
208
-
209
- @torch.no_grad()
210
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
211
- sd = torch.load(path, map_location="cuda")
212
- if "state_dict" in list(sd.keys()):
213
- sd = sd["state_dict"]
214
- keys = list(sd.keys())
215
- for k in keys:
216
- for ik in ignore_keys:
217
- if k.startswith(ik):
218
- print("Deleting key {} from state_dict.".format(k))
219
- del sd[k]
220
- if self.make_it_fit:
221
- n_params = len([name for name, _ in
222
- itertools.chain(self.named_parameters(),
223
- self.named_buffers())])
224
- for name, param in tqdm(
225
- itertools.chain(self.named_parameters(),
226
- self.named_buffers()),
227
- desc="Fitting old weights to new weights",
228
- total=n_params
229
- ):
230
- if not name in sd:
231
- continue
232
- old_shape = sd[name].shape
233
- new_shape = param.shape
234
- assert len(old_shape) == len(new_shape)
235
- if len(new_shape) > 2:
236
- # we only modify first two axes
237
- assert new_shape[2:] == old_shape[2:]
238
- # assumes first axis corresponds to output dim
239
- if not new_shape == old_shape:
240
- new_param = param.clone()
241
- old_param = sd[name]
242
- if len(new_shape) == 1:
243
- for i in range(new_param.shape[0]):
244
- new_param[i] = old_param[i % old_shape[0]]
245
- elif len(new_shape) >= 2:
246
- for i in range(new_param.shape[0]):
247
- for j in range(new_param.shape[1]):
248
- new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
249
-
250
- n_used_old = torch.ones(old_shape[1])
251
- for j in range(new_param.shape[1]):
252
- n_used_old[j % old_shape[1]] += 1
253
- n_used_new = torch.zeros(new_shape[1])
254
- for j in range(new_param.shape[1]):
255
- n_used_new[j] = n_used_old[j % old_shape[1]]
256
-
257
- n_used_new = n_used_new[None, :]
258
- while len(n_used_new.shape) < len(new_shape):
259
- n_used_new = n_used_new.unsqueeze(-1)
260
- new_param /= n_used_new
261
-
262
- sd[name] = new_param
263
-
264
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
265
- sd, strict=False)
266
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
267
- if len(missing) > 0:
268
- print(f"Missing Keys:\n {missing}")
269
- if len(unexpected) > 0:
270
- print(f"\nUnexpected Keys:\n {unexpected}")
271
-
272
- def q_mean_variance(self, x_start, t):
273
- """
274
- Get the distribution q(x_t | x_0).
275
- :param x_start: the [N x C x ...] tensor of noiseless inputs.
276
- :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
277
- :return: A tuple (mean, variance, log_variance), all of x_start's shape.
278
- """
279
- mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
280
- variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
281
- log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
282
- return mean, variance, log_variance
283
-
284
- def predict_start_from_noise(self, x_t, t, noise):
285
- return (
286
- extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
287
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
288
- )
289
-
290
- def predict_start_from_z_and_v(self, x_t, t, v):
291
- # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
292
- # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
293
- return (
294
- extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
295
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
296
- )
297
-
298
- def predict_eps_from_z_and_v(self, x_t, t, v):
299
- return (
300
- extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
301
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
302
- )
303
-
304
- def q_posterior(self, x_start, x_t, t):
305
- posterior_mean = (
306
- extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
307
- extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
308
- )
309
- posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
310
- posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
311
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
312
-
313
- def p_mean_variance(self, x, t, clip_denoised: bool):
314
- model_out = self.model(x, t)
315
- if self.parameterization == "eps":
316
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
317
- elif self.parameterization == "x0":
318
- x_recon = model_out
319
- if clip_denoised:
320
- x_recon.clamp_(-1., 1.)
321
-
322
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
323
- return model_mean, posterior_variance, posterior_log_variance
324
-
325
- @torch.no_grad()
326
- def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
327
- b, *_, device = *x.shape, x.device
328
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
329
- noise = noise_like(x.shape, device, repeat_noise)
330
- # no noise when t == 0
331
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
332
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
333
-
334
- @torch.no_grad()
335
- def p_sample_loop(self, shape, return_intermediates=False):
336
- device = self.betas.device
337
- b = shape[0]
338
- img = torch.randn(shape, device=device)
339
- intermediates = [img]
340
- for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
341
- img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
342
- clip_denoised=self.clip_denoised)
343
- if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
344
- intermediates.append(img)
345
- if return_intermediates:
346
- return img, intermediates
347
- return img
348
-
349
- @torch.no_grad()
350
- def sample(self, batch_size=16, return_intermediates=False):
351
- image_size = self.image_size
352
- channels = self.channels
353
- return self.p_sample_loop((batch_size, channels, image_size, image_size),
354
- return_intermediates=return_intermediates)
355
-
356
- def q_sample(self, x_start, t, noise=None):
357
- noise = default(noise, lambda: torch.randn_like(x_start))
358
- return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
359
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
360
-
361
- def get_v(self, x, noise, t):
362
- return (
363
- extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
364
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
365
- )
366
-
367
- def get_loss(self, pred, target, mean=True):
368
- if self.loss_type == 'l1':
369
- loss = (target - pred).abs()
370
- if mean:
371
- loss = loss.mean()
372
- elif self.loss_type == 'l2':
373
- if mean:
374
- loss = torch.nn.functional.mse_loss(target, pred)
375
- else:
376
- loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
377
- else:
378
- raise NotImplementedError("unknown loss type '{loss_type}'")
379
-
380
- return loss
381
-
382
- def p_losses(self, x_start, t, noise=None):
383
- noise = default(noise, lambda: torch.randn_like(x_start))
384
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
385
- model_out = self.model(x_noisy, t)
386
-
387
- loss_dict = {}
388
- if self.parameterization == "eps":
389
- target = noise
390
- elif self.parameterization == "x0":
391
- target = x_start
392
- elif self.parameterization == "v":
393
- target = self.get_v(x_start, noise, t)
394
- else:
395
- raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
396
-
397
- loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
398
-
399
- log_prefix = 'train' if self.training else 'val'
400
-
401
- loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
402
- loss_simple = loss.mean() * self.l_simple_weight
403
-
404
- loss_vlb = (self.lvlb_weights[t] * loss).mean()
405
- loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
406
-
407
- loss = loss_simple + self.original_elbo_weight * loss_vlb
408
-
409
- loss_dict.update({f'{log_prefix}/loss': loss})
410
-
411
- return loss, loss_dict
412
-
413
- def forward(self, x, *args, **kwargs):
414
- # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
415
- # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
416
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
417
- return self.p_losses(x, t, *args, **kwargs)
418
-
419
- def get_input(self, batch, k):
420
- x = batch[k]
421
- if len(x.shape) == 3:
422
- x = x[..., None]
423
- x = rearrange(x, 'b h w c -> b c h w')
424
- x = x.to(memory_format=torch.contiguous_format).float()
425
- return x
426
-
427
- def shared_step(self, batch):
428
- x = self.get_input(batch, self.first_stage_key)
429
- loss, loss_dict = self(x)
430
- return loss, loss_dict
431
-
432
- def training_step(self, batch, batch_idx):
433
- for k in self.ucg_training:
434
- p = self.ucg_training[k]["p"]
435
- val = self.ucg_training[k]["val"]
436
- if val is None:
437
- val = ""
438
- for i in range(len(batch[k])):
439
- if self.ucg_prng.choice(2, p=[1 - p, p]):
440
- batch[k][i] = val
441
-
442
- loss, loss_dict = self.shared_step(batch)
443
-
444
- self.log_dict(loss_dict, prog_bar=True,
445
- logger=True, on_step=True, on_epoch=True)
446
-
447
- self.log("global_step", self.global_step,
448
- prog_bar=True, logger=True, on_step=True, on_epoch=False)
449
-
450
- if self.use_scheduler:
451
- lr = self.optimizers().param_groups[0]['lr']
452
- self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
453
-
454
- return loss
455
-
456
- @torch.no_grad()
457
- def validation_step(self, batch, batch_idx):
458
- _, loss_dict_no_ema = self.shared_step(batch)
459
- with self.ema_scope():
460
- _, loss_dict_ema = self.shared_step(batch)
461
- loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
462
- self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
463
- self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
464
-
465
- def on_train_batch_end(self, *args, **kwargs):
466
- if self.use_ema:
467
- self.model_ema(self.model)
468
-
469
- def _get_rows_from_list(self, samples):
470
- n_imgs_per_row = len(samples)
471
- denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
472
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
473
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
474
- return denoise_grid
475
-
476
- @torch.no_grad()
477
- def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
478
- log = dict()
479
- x = self.get_input(batch, self.first_stage_key)
480
- N = min(x.shape[0], N)
481
- n_row = min(x.shape[0], n_row)
482
- x = x.to(self.device)[:N]
483
- log["inputs"] = x
484
-
485
- # get diffusion row
486
- diffusion_row = list()
487
- x_start = x[:n_row]
488
-
489
- for t in range(self.num_timesteps):
490
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
491
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
492
- t = t.to(self.device).long()
493
- noise = torch.randn_like(x_start)
494
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
495
- diffusion_row.append(x_noisy)
496
-
497
- log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
498
-
499
- if sample:
500
- # get denoise row
501
- with self.ema_scope("Plotting"):
502
- samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
503
-
504
- log["samples"] = samples
505
- log["denoise_row"] = self._get_rows_from_list(denoise_row)
506
-
507
- if return_keys:
508
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
509
- return log
510
- else:
511
- return {key: log[key] for key in return_keys}
512
- return log
513
-
514
- def configure_optimizers(self):
515
- lr = self.learning_rate
516
- params = list(self.model.parameters())
517
- if self.learn_logvar:
518
- params = params + [self.logvar]
519
- opt = torch.optim.AdamW(params, lr=lr)
520
- return opt
521
-
522
-
523
- class LatentDiffusion(DDPM):
524
- """main class"""
525
-
526
- def __init__(self,
527
- first_stage_config,
528
- cond_stage_config,
529
- num_timesteps_cond=None,
530
- cond_stage_key="image",
531
- cond_stage_trainable=False,
532
- concat_mode=True,
533
- cond_stage_forward=None,
534
- conditioning_key=None,
535
- scale_factor=1.0,
536
- scale_by_std=False,
537
- force_null_conditioning=False,
538
- *args, **kwargs):
539
- self.force_null_conditioning = force_null_conditioning
540
- self.num_timesteps_cond = default(num_timesteps_cond, 1)
541
- self.scale_by_std = scale_by_std
542
- assert self.num_timesteps_cond <= kwargs['timesteps']
543
- # for backwards compatibility after implementation of DiffusionWrapper
544
- if conditioning_key is None:
545
- conditioning_key = 'concat' if concat_mode else 'crossattn'
546
- if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
547
- conditioning_key = None
548
- ckpt_path = kwargs.pop("ckpt_path", None)
549
- reset_ema = kwargs.pop("reset_ema", False)
550
- reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
551
- ignore_keys = kwargs.pop("ignore_keys", [])
552
- super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
553
- self.concat_mode = concat_mode
554
- self.cond_stage_trainable = cond_stage_trainable
555
- self.cond_stage_key = cond_stage_key
556
- try:
557
- self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
558
- except:
559
- self.num_downs = 0
560
- if not scale_by_std:
561
- self.scale_factor = scale_factor
562
- else:
563
- self.register_buffer('scale_factor', torch.tensor(scale_factor))
564
- self.instantiate_first_stage(first_stage_config)
565
- self.instantiate_cond_stage(cond_stage_config)
566
- self.cond_stage_forward = cond_stage_forward
567
- self.clip_denoised = False
568
- self.bbox_tokenizer = None
569
-
570
- self.restarted_from_ckpt = False
571
- if ckpt_path is not None:
572
- self.init_from_ckpt(ckpt_path, ignore_keys)
573
- self.restarted_from_ckpt = True
574
- if reset_ema:
575
- assert self.use_ema
576
- print(
577
- f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
578
- self.model_ema = LitEma(self.model)
579
- if reset_num_ema_updates:
580
- print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
581
- assert self.use_ema
582
- self.model_ema.reset_num_updates()
583
-
584
- def make_cond_schedule(self, ):
585
- self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
586
- ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
587
- self.cond_ids[:self.num_timesteps_cond] = ids
588
-
589
- @rank_zero_only
590
- @torch.no_grad()
591
- def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
592
- # only for very first batch
593
- if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
594
- assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
595
- # set rescale weight to 1./std of encodings
596
- print("### USING STD-RESCALING ###")
597
- x = super().get_input(batch, self.first_stage_key)
598
- x = x.to(self.device)
599
- encoder_posterior = self.encode_first_stage(x)
600
- z = self.get_first_stage_encoding(encoder_posterior).detach()
601
- del self.scale_factor
602
- self.register_buffer('scale_factor', 1. / z.flatten().std())
603
- print(f"setting self.scale_factor to {self.scale_factor}")
604
- print("### USING STD-RESCALING ###")
605
-
606
- def register_schedule(self,
607
- given_betas=None, beta_schedule="linear", timesteps=1000,
608
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
609
- super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
610
-
611
- self.shorten_cond_schedule = self.num_timesteps_cond > 1
612
- if self.shorten_cond_schedule:
613
- self.make_cond_schedule()
614
-
615
- def instantiate_first_stage(self, config):
616
- model = instantiate_from_config(config)
617
- self.first_stage_model = model.eval()
618
- self.first_stage_model.train = disabled_train
619
- for param in self.first_stage_model.parameters():
620
- param.requires_grad = False
621
-
622
- def instantiate_cond_stage(self, config):
623
- if not self.cond_stage_trainable:
624
- if config == "__is_first_stage__":
625
- print("Using first stage also as cond stage.")
626
- self.cond_stage_model = self.first_stage_model
627
- elif config == "__is_unconditional__":
628
- print(f"Training {self.__class__.__name__} as an unconditional model.")
629
- self.cond_stage_model = None
630
- # self.be_unconditional = True
631
- else:
632
- model = instantiate_from_config(config)
633
- self.cond_stage_model = model.eval()
634
- self.cond_stage_model.train = disabled_train
635
- for param in self.cond_stage_model.parameters():
636
- param.requires_grad = False
637
- else:
638
- assert config != '__is_first_stage__'
639
- assert config != '__is_unconditional__'
640
- model = instantiate_from_config(config)
641
- self.cond_stage_model = model
642
-
643
- def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
644
- denoise_row = []
645
- for zd in tqdm(samples, desc=desc):
646
- denoise_row.append(self.decode_first_stage(zd.to(self.device),
647
- force_not_quantize=force_no_decoder_quantization))
648
- n_imgs_per_row = len(denoise_row)
649
- denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
650
- denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
651
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
652
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
653
- return denoise_grid
654
-
655
- def get_first_stage_encoding(self, encoder_posterior):
656
- if isinstance(encoder_posterior, DiagonalGaussianDistribution):
657
- z = encoder_posterior.sample()
658
- elif isinstance(encoder_posterior, torch.Tensor):
659
- z = encoder_posterior
660
- else:
661
- raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
662
- return self.scale_factor * z
663
-
664
- def get_learned_conditioning(self, c):
665
- if self.cond_stage_forward is None:
666
- if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
667
- c = self.cond_stage_model.encode(c)
668
- if isinstance(c, DiagonalGaussianDistribution):
669
- c = c.mode()
670
- else:
671
- c = self.cond_stage_model(c)
672
- else:
673
- assert hasattr(self.cond_stage_model, self.cond_stage_forward)
674
- c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
675
- return c
676
-
677
- def meshgrid(self, h, w):
678
- y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
679
- x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
680
-
681
- arr = torch.cat([y, x], dim=-1)
682
- return arr
683
-
684
- def delta_border(self, h, w):
685
- """
686
- :param h: height
687
- :param w: width
688
- :return: normalized distance to image border,
689
- wtith min distance = 0 at border and max dist = 0.5 at image center
690
- """
691
- lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
692
- arr = self.meshgrid(h, w) / lower_right_corner
693
- dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
694
- dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
695
- edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
696
- return edge_dist
697
-
698
- def get_weighting(self, h, w, Ly, Lx, device):
699
- weighting = self.delta_border(h, w)
700
- weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
701
- self.split_input_params["clip_max_weight"], )
702
- weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
703
-
704
- if self.split_input_params["tie_braker"]:
705
- L_weighting = self.delta_border(Ly, Lx)
706
- L_weighting = torch.clip(L_weighting,
707
- self.split_input_params["clip_min_tie_weight"],
708
- self.split_input_params["clip_max_tie_weight"])
709
-
710
- L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
711
- weighting = weighting * L_weighting
712
- return weighting
713
-
714
- def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
715
- """
716
- :param x: img of size (bs, c, h, w)
717
- :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
718
- """
719
- bs, nc, h, w = x.shape
720
-
721
- # number of crops in image
722
- Ly = (h - kernel_size[0]) // stride[0] + 1
723
- Lx = (w - kernel_size[1]) // stride[1] + 1
724
-
725
- if uf == 1 and df == 1:
726
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
727
- unfold = torch.nn.Unfold(**fold_params)
728
-
729
- fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
730
-
731
- weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
732
- normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
733
- weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
734
-
735
- elif uf > 1 and df == 1:
736
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
737
- unfold = torch.nn.Unfold(**fold_params)
738
-
739
- fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
740
- dilation=1, padding=0,
741
- stride=(stride[0] * uf, stride[1] * uf))
742
- fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
743
-
744
- weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
745
- normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
746
- weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
747
-
748
- elif df > 1 and uf == 1:
749
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
750
- unfold = torch.nn.Unfold(**fold_params)
751
-
752
- fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
753
- dilation=1, padding=0,
754
- stride=(stride[0] // df, stride[1] // df))
755
- fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
756
-
757
- weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
758
- normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
759
- weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
760
-
761
- else:
762
- raise NotImplementedError
763
-
764
- return fold, unfold, normalization, weighting
765
-
766
- @torch.no_grad()
767
- def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
768
- cond_key=None, return_original_cond=False, bs=None, return_x=False):
769
- x = super().get_input(batch, k)
770
- if bs is not None:
771
- x = x[:bs]
772
- x = x.to(self.device)
773
- encoder_posterior = self.encode_first_stage(x)
774
- z = self.get_first_stage_encoding(encoder_posterior).detach()
775
-
776
- if self.model.conditioning_key is not None and not self.force_null_conditioning:
777
- if cond_key is None:
778
- cond_key = self.cond_stage_key
779
- if cond_key != self.first_stage_key:
780
- if cond_key in ['caption', 'coordinates_bbox', "txt"]:
781
- xc = batch[cond_key]
782
- elif cond_key in ['class_label', 'cls']:
783
- xc = batch
784
- else:
785
- xc = super().get_input(batch, cond_key).to(self.device)
786
- else:
787
- xc = x
788
- if not self.cond_stage_trainable or force_c_encode:
789
- if isinstance(xc, dict) or isinstance(xc, list):
790
- c = self.get_learned_conditioning(xc)
791
- else:
792
- c = self.get_learned_conditioning(xc.to(self.device))
793
- else:
794
- c = xc
795
- if bs is not None:
796
- c = c[:bs]
797
-
798
- if self.use_positional_encodings:
799
- pos_x, pos_y = self.compute_latent_shifts(batch)
800
- ckey = __conditioning_keys__[self.model.conditioning_key]
801
- c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
802
-
803
- else:
804
- c = None
805
- xc = None
806
- if self.use_positional_encodings:
807
- pos_x, pos_y = self.compute_latent_shifts(batch)
808
- c = {'pos_x': pos_x, 'pos_y': pos_y}
809
- out = [z, c]
810
- if return_first_stage_outputs:
811
- xrec = self.decode_first_stage(z)
812
- out.extend([x, xrec])
813
- if return_x:
814
- out.extend([x])
815
- if return_original_cond:
816
- out.append(xc)
817
- return out
818
-
819
- @torch.no_grad()
820
- def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
821
- if predict_cids:
822
- if z.dim() == 4:
823
- z = torch.argmax(z.exp(), dim=1).long()
824
- z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
825
- z = rearrange(z, 'b h w c -> b c h w').contiguous()
826
-
827
- z = 1. / self.scale_factor * z
828
- return self.first_stage_model.decode(z)
829
-
830
- @torch.no_grad()
831
- def encode_first_stage(self, x):
832
- return self.first_stage_model.encode(x)
833
-
834
- def shared_step(self, batch, **kwargs):
835
- x, c = self.get_input(batch, self.first_stage_key)
836
- loss = self(x, c)
837
- return loss
838
-
839
- def forward(self, x, c, *args, **kwargs):
840
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
841
- if self.model.conditioning_key is not None:
842
- assert c is not None
843
- if self.cond_stage_trainable:
844
- c = self.get_learned_conditioning(c)
845
- if self.shorten_cond_schedule: # TODO: drop this option
846
- tc = self.cond_ids[t].to(self.device)
847
- c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
848
- return self.p_losses(x, c, t, *args, **kwargs)
849
-
850
- def apply_model(self, x_noisy, t, cond, return_ids=False):
851
- if isinstance(cond, dict):
852
- # hybrid case, cond is expected to be a dict
853
- pass
854
- else:
855
- if not isinstance(cond, list):
856
- cond = [cond]
857
- key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
858
- cond = {key: cond}
859
-
860
- x_recon = self.model(x_noisy, t, **cond)
861
-
862
- if isinstance(x_recon, tuple) and not return_ids:
863
- return x_recon[0]
864
- else:
865
- return x_recon
866
-
867
- def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
868
- return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
869
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
870
-
871
- def _prior_bpd(self, x_start):
872
- """
873
- Get the prior KL term for the variational lower-bound, measured in
874
- bits-per-dim.
875
- This term can't be optimized, as it only depends on the encoder.
876
- :param x_start: the [N x C x ...] tensor of inputs.
877
- :return: a batch of [N] KL values (in bits), one per batch element.
878
- """
879
- batch_size = x_start.shape[0]
880
- t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
881
- qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
882
- kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
883
- return mean_flat(kl_prior) / np.log(2.0)
884
-
885
- def p_losses(self, x_start, cond, t, noise=None):
886
- noise = default(noise, lambda: torch.randn_like(x_start))
887
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
888
- model_output = self.apply_model(x_noisy, t, cond)
889
-
890
- loss_dict = {}
891
- prefix = 'train' if self.training else 'val'
892
-
893
- if self.parameterization == "x0":
894
- target = x_start
895
- elif self.parameterization == "eps":
896
- target = noise
897
- elif self.parameterization == "v":
898
- target = self.get_v(x_start, noise, t)
899
- else:
900
- raise NotImplementedError()
901
-
902
- loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
903
- loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
904
-
905
- logvar_t = self.logvar[t].to(self.device)
906
- loss = loss_simple / torch.exp(logvar_t) + logvar_t
907
- # loss = loss_simple / torch.exp(self.logvar) + self.logvar
908
- if self.learn_logvar:
909
- loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
910
- loss_dict.update({'logvar': self.logvar.data.mean()})
911
-
912
- loss = self.l_simple_weight * loss.mean()
913
-
914
- loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
915
- loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
916
- loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
917
- loss += (self.original_elbo_weight * loss_vlb)
918
- loss_dict.update({f'{prefix}/loss': loss})
919
-
920
- return loss, loss_dict
921
-
922
- def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
923
- return_x0=False, score_corrector=None, corrector_kwargs=None):
924
- t_in = t
925
- model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
926
-
927
- if score_corrector is not None:
928
- assert self.parameterization == "eps"
929
- model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
930
-
931
- if return_codebook_ids:
932
- model_out, logits = model_out
933
-
934
- if self.parameterization == "eps":
935
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
936
- elif self.parameterization == "x0":
937
- x_recon = model_out
938
- else:
939
- raise NotImplementedError()
940
-
941
- if clip_denoised:
942
- x_recon.clamp_(-1., 1.)
943
- if quantize_denoised:
944
- x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
945
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
946
- if return_codebook_ids:
947
- return model_mean, posterior_variance, posterior_log_variance, logits
948
- elif return_x0:
949
- return model_mean, posterior_variance, posterior_log_variance, x_recon
950
- else:
951
- return model_mean, posterior_variance, posterior_log_variance
952
-
953
- @torch.no_grad()
954
- def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
955
- return_codebook_ids=False, quantize_denoised=False, return_x0=False,
956
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
957
- b, *_, device = *x.shape, x.device
958
- outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
959
- return_codebook_ids=return_codebook_ids,
960
- quantize_denoised=quantize_denoised,
961
- return_x0=return_x0,
962
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
963
- if return_codebook_ids:
964
- raise DeprecationWarning("Support dropped.")
965
- model_mean, _, model_log_variance, logits = outputs
966
- elif return_x0:
967
- model_mean, _, model_log_variance, x0 = outputs
968
- else:
969
- model_mean, _, model_log_variance = outputs
970
-
971
- noise = noise_like(x.shape, device, repeat_noise) * temperature
972
- if noise_dropout > 0.:
973
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
974
- # no noise when t == 0
975
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
976
-
977
- if return_codebook_ids:
978
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
979
- if return_x0:
980
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
981
- else:
982
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
983
-
984
- @torch.no_grad()
985
- def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
986
- img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
987
- score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
988
- log_every_t=None):
989
- if not log_every_t:
990
- log_every_t = self.log_every_t
991
- timesteps = self.num_timesteps
992
- if batch_size is not None:
993
- b = batch_size if batch_size is not None else shape[0]
994
- shape = [batch_size] + list(shape)
995
- else:
996
- b = batch_size = shape[0]
997
- if x_T is None:
998
- img = torch.randn(shape, device=self.device)
999
- else:
1000
- img = x_T
1001
- intermediates = []
1002
- if cond is not None:
1003
- if isinstance(cond, dict):
1004
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1005
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1006
- else:
1007
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1008
-
1009
- if start_T is not None:
1010
- timesteps = min(timesteps, start_T)
1011
- iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1012
- total=timesteps) if verbose else reversed(
1013
- range(0, timesteps))
1014
- if type(temperature) == float:
1015
- temperature = [temperature] * timesteps
1016
-
1017
- for i in iterator:
1018
- ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1019
- if self.shorten_cond_schedule:
1020
- assert self.model.conditioning_key != 'hybrid'
1021
- tc = self.cond_ids[ts].to(cond.device)
1022
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1023
-
1024
- img, x0_partial = self.p_sample(img, cond, ts,
1025
- clip_denoised=self.clip_denoised,
1026
- quantize_denoised=quantize_denoised, return_x0=True,
1027
- temperature=temperature[i], noise_dropout=noise_dropout,
1028
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1029
- if mask is not None:
1030
- assert x0 is not None
1031
- img_orig = self.q_sample(x0, ts)
1032
- img = img_orig * mask + (1. - mask) * img
1033
-
1034
- if i % log_every_t == 0 or i == timesteps - 1:
1035
- intermediates.append(x0_partial)
1036
- if callback: callback(i)
1037
- if img_callback: img_callback(img, i)
1038
- return img, intermediates
1039
-
1040
- @torch.no_grad()
1041
- def p_sample_loop(self, cond, shape, return_intermediates=False,
1042
- x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1043
- mask=None, x0=None, img_callback=None, start_T=None,
1044
- log_every_t=None):
1045
-
1046
- if not log_every_t:
1047
- log_every_t = self.log_every_t
1048
- device = self.betas.device
1049
- b = shape[0]
1050
- if x_T is None:
1051
- img = torch.randn(shape, device=device)
1052
- else:
1053
- img = x_T
1054
-
1055
- intermediates = [img]
1056
- if timesteps is None:
1057
- timesteps = self.num_timesteps
1058
-
1059
- if start_T is not None:
1060
- timesteps = min(timesteps, start_T)
1061
- iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1062
- range(0, timesteps))
1063
-
1064
- if mask is not None:
1065
- assert x0 is not None
1066
- assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1067
-
1068
- for i in iterator:
1069
- ts = torch.full((b,), i, device=device, dtype=torch.long)
1070
- if self.shorten_cond_schedule:
1071
- assert self.model.conditioning_key != 'hybrid'
1072
- tc = self.cond_ids[ts].to(cond.device)
1073
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1074
-
1075
- img = self.p_sample(img, cond, ts,
1076
- clip_denoised=self.clip_denoised,
1077
- quantize_denoised=quantize_denoised)
1078
- if mask is not None:
1079
- img_orig = self.q_sample(x0, ts)
1080
- img = img_orig * mask + (1. - mask) * img
1081
-
1082
- if i % log_every_t == 0 or i == timesteps - 1:
1083
- intermediates.append(img)
1084
- if callback: callback(i)
1085
- if img_callback: img_callback(img, i)
1086
-
1087
- if return_intermediates:
1088
- return img, intermediates
1089
- return img
1090
-
1091
- @torch.no_grad()
1092
- def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1093
- verbose=True, timesteps=None, quantize_denoised=False,
1094
- mask=None, x0=None, shape=None, **kwargs):
1095
- if shape is None:
1096
- shape = (batch_size, self.channels, self.image_size, self.image_size)
1097
- if cond is not None:
1098
- if isinstance(cond, dict):
1099
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1100
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1101
- else:
1102
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1103
- return self.p_sample_loop(cond,
1104
- shape,
1105
- return_intermediates=return_intermediates, x_T=x_T,
1106
- verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1107
- mask=mask, x0=x0)
1108
-
1109
- @torch.no_grad()
1110
- def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1111
- if ddim:
1112
- ddim_sampler = DDIMSampler(self)
1113
- shape = (self.channels, self.image_size, self.image_size)
1114
- samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1115
- shape, cond, verbose=False, **kwargs)
1116
-
1117
- else:
1118
- samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1119
- return_intermediates=True, **kwargs)
1120
-
1121
- return samples, intermediates
1122
-
1123
- @torch.no_grad()
1124
- def get_unconditional_conditioning(self, batch_size, null_label=None):
1125
- if null_label is not None:
1126
- xc = null_label
1127
- if isinstance(xc, ListConfig):
1128
- xc = list(xc)
1129
- if isinstance(xc, dict) or isinstance(xc, list):
1130
- c = self.get_learned_conditioning(xc)
1131
- else:
1132
- if hasattr(xc, "to"):
1133
- xc = xc.to(self.device)
1134
- c = self.get_learned_conditioning(xc)
1135
- else:
1136
- if self.cond_stage_key in ["class_label", "cls"]:
1137
- xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
1138
- return self.get_learned_conditioning(xc)
1139
- else:
1140
- raise NotImplementedError("todo")
1141
- if isinstance(c, list): # in case the encoder gives us a list
1142
- for i in range(len(c)):
1143
- c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
1144
- else:
1145
- c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1146
- return c
1147
-
1148
- @torch.no_grad()
1149
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
1150
- quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1151
- plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1152
- use_ema_scope=True,
1153
- **kwargs):
1154
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1155
- use_ddim = ddim_steps is not None
1156
-
1157
- log = dict()
1158
- z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1159
- return_first_stage_outputs=True,
1160
- force_c_encode=True,
1161
- return_original_cond=True,
1162
- bs=N)
1163
- N = min(x.shape[0], N)
1164
- n_row = min(x.shape[0], n_row)
1165
- log["inputs"] = x
1166
- log["reconstruction"] = xrec
1167
- if self.model.conditioning_key is not None:
1168
- if hasattr(self.cond_stage_model, "decode"):
1169
- xc = self.cond_stage_model.decode(c)
1170
- log["conditioning"] = xc
1171
- elif self.cond_stage_key in ["caption", "txt"]:
1172
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1173
- log["conditioning"] = xc
1174
- elif self.cond_stage_key in ['class_label', "cls"]:
1175
- try:
1176
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1177
- log['conditioning'] = xc
1178
- except KeyError:
1179
- # probably no "human_label" in batch
1180
- pass
1181
- elif isimage(xc):
1182
- log["conditioning"] = xc
1183
- if ismap(xc):
1184
- log["original_conditioning"] = self.to_rgb(xc)
1185
-
1186
- if plot_diffusion_rows:
1187
- # get diffusion row
1188
- diffusion_row = list()
1189
- z_start = z[:n_row]
1190
- for t in range(self.num_timesteps):
1191
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1192
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1193
- t = t.to(self.device).long()
1194
- noise = torch.randn_like(z_start)
1195
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1196
- diffusion_row.append(self.decode_first_stage(z_noisy))
1197
-
1198
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1199
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1200
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1201
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1202
- log["diffusion_row"] = diffusion_grid
1203
-
1204
- if sample:
1205
- # get denoise row
1206
- with ema_scope("Sampling"):
1207
- samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1208
- ddim_steps=ddim_steps, eta=ddim_eta)
1209
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1210
- x_samples = self.decode_first_stage(samples)
1211
- log["samples"] = x_samples
1212
- if plot_denoise_rows:
1213
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1214
- log["denoise_row"] = denoise_grid
1215
-
1216
- if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1217
- self.first_stage_model, IdentityFirstStage):
1218
- # also display when quantizing x0 while sampling
1219
- with ema_scope("Plotting Quantized Denoised"):
1220
- samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1221
- ddim_steps=ddim_steps, eta=ddim_eta,
1222
- quantize_denoised=True)
1223
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1224
- # quantize_denoised=True)
1225
- x_samples = self.decode_first_stage(samples.to(self.device))
1226
- log["samples_x0_quantized"] = x_samples
1227
-
1228
- if unconditional_guidance_scale > 1.0:
1229
- uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1230
- if self.model.conditioning_key == "crossattn-adm":
1231
- uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
1232
- with ema_scope("Sampling with classifier-free guidance"):
1233
- samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1234
- ddim_steps=ddim_steps, eta=ddim_eta,
1235
- unconditional_guidance_scale=unconditional_guidance_scale,
1236
- unconditional_conditioning=uc,
1237
- )
1238
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1239
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1240
-
1241
- if inpaint:
1242
- # make a simple center square
1243
- b, h, w = z.shape[0], z.shape[2], z.shape[3]
1244
- mask = torch.ones(N, h, w).to(self.device)
1245
- # zeros will be filled in
1246
- mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1247
- mask = mask[:, None, ...]
1248
- with ema_scope("Plotting Inpaint"):
1249
- samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1250
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1251
- x_samples = self.decode_first_stage(samples.to(self.device))
1252
- log["samples_inpainting"] = x_samples
1253
- log["mask"] = mask
1254
-
1255
- # outpaint
1256
- mask = 1. - mask
1257
- with ema_scope("Plotting Outpaint"):
1258
- samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
1259
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1260
- x_samples = self.decode_first_stage(samples.to(self.device))
1261
- log["samples_outpainting"] = x_samples
1262
-
1263
- if plot_progressive_rows:
1264
- with ema_scope("Plotting Progressives"):
1265
- img, progressives = self.progressive_denoising(c,
1266
- shape=(self.channels, self.image_size, self.image_size),
1267
- batch_size=N)
1268
- prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1269
- log["progressive_row"] = prog_row
1270
-
1271
- if return_keys:
1272
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1273
- return log
1274
- else:
1275
- return {key: log[key] for key in return_keys}
1276
- return log
1277
-
1278
- def configure_optimizers(self):
1279
- lr = self.learning_rate
1280
- params = list(self.model.parameters())
1281
- if self.cond_stage_trainable:
1282
- print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1283
- params = params + list(self.cond_stage_model.parameters())
1284
- if self.learn_logvar:
1285
- print('Diffusion model optimizing logvar')
1286
- params.append(self.logvar)
1287
- opt = torch.optim.AdamW(params, lr=lr)
1288
- if self.use_scheduler:
1289
- assert 'target' in self.scheduler_config
1290
- scheduler = instantiate_from_config(self.scheduler_config)
1291
-
1292
- print("Setting up LambdaLR scheduler...")
1293
- scheduler = [
1294
- {
1295
- 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1296
- 'interval': 'step',
1297
- 'frequency': 1
1298
- }]
1299
- return [opt], scheduler
1300
- return opt
1301
-
1302
- @torch.no_grad()
1303
- def to_rgb(self, x):
1304
- x = x.float()
1305
- if not hasattr(self, "colorize"):
1306
- self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1307
- x = nn.functional.conv2d(x, weight=self.colorize)
1308
- x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1309
- return x
1310
-
1311
-
1312
- class DiffusionWrapper(pl.LightningModule):
1313
- def __init__(self, diff_model_config, conditioning_key):
1314
- super().__init__()
1315
- self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
1316
- self.diffusion_model = instantiate_from_config(diff_model_config)
1317
- self.conditioning_key = conditioning_key
1318
- assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
1319
-
1320
- def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1321
- if self.conditioning_key is None:
1322
- out = self.diffusion_model(x, t)
1323
- elif self.conditioning_key == 'concat':
1324
- xc = torch.cat([x] + c_concat, dim=1)
1325
- out = self.diffusion_model(xc, t)
1326
- elif self.conditioning_key == 'crossattn':
1327
- if not self.sequential_cross_attn:
1328
- cc = torch.cat(c_crossattn, 1)
1329
- else:
1330
- cc = c_crossattn
1331
- out = self.diffusion_model(x, t, context=cc)
1332
- elif self.conditioning_key == 'hybrid':
1333
- xc = torch.cat([x] + c_concat, dim=1)
1334
- cc = torch.cat(c_crossattn, 1)
1335
- out = self.diffusion_model(xc, t, context=cc)
1336
- elif self.conditioning_key == 'hybrid-adm':
1337
- assert c_adm is not None
1338
- xc = torch.cat([x] + c_concat, dim=1)
1339
- cc = torch.cat(c_crossattn, 1)
1340
- out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1341
- elif self.conditioning_key == 'crossattn-adm':
1342
- assert c_adm is not None
1343
- cc = torch.cat(c_crossattn, 1)
1344
- out = self.diffusion_model(x, t, context=cc, y=c_adm)
1345
- elif self.conditioning_key == 'adm':
1346
- cc = c_crossattn[0]
1347
- out = self.diffusion_model(x, t, y=cc)
1348
- else:
1349
- raise NotImplementedError()
1350
-
1351
- return out
1352
-
1353
-
1354
- class LatentUpscaleDiffusion(LatentDiffusion):
1355
- def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
1356
- super().__init__(*args, **kwargs)
1357
- # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1358
- assert not self.cond_stage_trainable
1359
- self.instantiate_low_stage(low_scale_config)
1360
- self.low_scale_key = low_scale_key
1361
- self.noise_level_key = noise_level_key
1362
-
1363
- def instantiate_low_stage(self, config):
1364
- model = instantiate_from_config(config)
1365
- self.low_scale_model = model.eval()
1366
- self.low_scale_model.train = disabled_train
1367
- for param in self.low_scale_model.parameters():
1368
- param.requires_grad = False
1369
-
1370
- @torch.no_grad()
1371
- def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1372
- if not log_mode:
1373
- z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1374
- else:
1375
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1376
- force_c_encode=True, return_original_cond=True, bs=bs)
1377
- x_low = batch[self.low_scale_key][:bs]
1378
- x_low = rearrange(x_low, 'b h w c -> b c h w')
1379
- x_low = x_low.to(memory_format=torch.contiguous_format).float()
1380
- zx, noise_level = self.low_scale_model(x_low)
1381
- if self.noise_level_key is not None:
1382
- # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
1383
- raise NotImplementedError('TODO')
1384
-
1385
- all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1386
- if log_mode:
1387
- # TODO: maybe disable if too expensive
1388
- x_low_rec = self.low_scale_model.decode(zx)
1389
- return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1390
- return z, all_conds
1391
-
1392
- @torch.no_grad()
1393
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1394
- plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1395
- unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1396
- **kwargs):
1397
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1398
- use_ddim = ddim_steps is not None
1399
-
1400
- log = dict()
1401
- z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1402
- log_mode=True)
1403
- N = min(x.shape[0], N)
1404
- n_row = min(x.shape[0], n_row)
1405
- log["inputs"] = x
1406
- log["reconstruction"] = xrec
1407
- log["x_lr"] = x_low
1408
- log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1409
- if self.model.conditioning_key is not None:
1410
- if hasattr(self.cond_stage_model, "decode"):
1411
- xc = self.cond_stage_model.decode(c)
1412
- log["conditioning"] = xc
1413
- elif self.cond_stage_key in ["caption", "txt"]:
1414
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1415
- log["conditioning"] = xc
1416
- elif self.cond_stage_key in ['class_label', 'cls']:
1417
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1418
- log['conditioning'] = xc
1419
- elif isimage(xc):
1420
- log["conditioning"] = xc
1421
- if ismap(xc):
1422
- log["original_conditioning"] = self.to_rgb(xc)
1423
-
1424
- if plot_diffusion_rows:
1425
- # get diffusion row
1426
- diffusion_row = list()
1427
- z_start = z[:n_row]
1428
- for t in range(self.num_timesteps):
1429
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1430
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1431
- t = t.to(self.device).long()
1432
- noise = torch.randn_like(z_start)
1433
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1434
- diffusion_row.append(self.decode_first_stage(z_noisy))
1435
-
1436
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1437
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1438
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1439
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1440
- log["diffusion_row"] = diffusion_grid
1441
-
1442
- if sample:
1443
- # get denoise row
1444
- with ema_scope("Sampling"):
1445
- samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1446
- ddim_steps=ddim_steps, eta=ddim_eta)
1447
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1448
- x_samples = self.decode_first_stage(samples)
1449
- log["samples"] = x_samples
1450
- if plot_denoise_rows:
1451
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1452
- log["denoise_row"] = denoise_grid
1453
-
1454
- if unconditional_guidance_scale > 1.0:
1455
- uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1456
- # TODO explore better "unconditional" choices for the other keys
1457
- # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1458
- uc = dict()
1459
- for k in c:
1460
- if k == "c_crossattn":
1461
- assert isinstance(c[k], list) and len(c[k]) == 1
1462
- uc[k] = [uc_tmp]
1463
- elif k == "c_adm": # todo: only run with text-based guidance?
1464
- assert isinstance(c[k], torch.Tensor)
1465
- #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1466
- uc[k] = c[k]
1467
- elif isinstance(c[k], list):
1468
- uc[k] = [c[k][i] for i in range(len(c[k]))]
1469
- else:
1470
- uc[k] = c[k]
1471
-
1472
- with ema_scope("Sampling with classifier-free guidance"):
1473
- samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1474
- ddim_steps=ddim_steps, eta=ddim_eta,
1475
- unconditional_guidance_scale=unconditional_guidance_scale,
1476
- unconditional_conditioning=uc,
1477
- )
1478
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1479
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1480
-
1481
- if plot_progressive_rows:
1482
- with ema_scope("Plotting Progressives"):
1483
- img, progressives = self.progressive_denoising(c,
1484
- shape=(self.channels, self.image_size, self.image_size),
1485
- batch_size=N)
1486
- prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1487
- log["progressive_row"] = prog_row
1488
-
1489
- return log
1490
-
1491
-
1492
- class LatentFinetuneDiffusion(LatentDiffusion):
1493
- """
1494
- Basis for different finetunas, such as inpainting or depth2image
1495
- To disable finetuning mode, set finetune_keys to None
1496
- """
1497
-
1498
- def __init__(self,
1499
- concat_keys: tuple,
1500
- finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1501
- "model_ema.diffusion_modelinput_blocks00weight"
1502
- ),
1503
- keep_finetune_dims=4,
1504
- # if model was trained without concat mode before and we would like to keep these channels
1505
- c_concat_log_start=None, # to log reconstruction of c_concat codes
1506
- c_concat_log_end=None,
1507
- *args, **kwargs
1508
- ):
1509
- ckpt_path = kwargs.pop("ckpt_path", None)
1510
- ignore_keys = kwargs.pop("ignore_keys", list())
1511
- super().__init__(*args, **kwargs)
1512
- self.finetune_keys = finetune_keys
1513
- self.concat_keys = concat_keys
1514
- self.keep_dims = keep_finetune_dims
1515
- self.c_concat_log_start = c_concat_log_start
1516
- self.c_concat_log_end = c_concat_log_end
1517
- if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1518
- if exists(ckpt_path):
1519
- self.init_from_ckpt(ckpt_path, ignore_keys)
1520
-
1521
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1522
- sd = torch.load(path, map_location="cpu")
1523
- if "state_dict" in list(sd.keys()):
1524
- sd = sd["state_dict"]
1525
- keys = list(sd.keys())
1526
- for k in keys:
1527
- for ik in ignore_keys:
1528
- if k.startswith(ik):
1529
- print("Deleting key {} from state_dict.".format(k))
1530
- del sd[k]
1531
-
1532
- # make it explicit, finetune by including extra input channels
1533
- if exists(self.finetune_keys) and k in self.finetune_keys:
1534
- new_entry = None
1535
- for name, param in self.named_parameters():
1536
- if name in self.finetune_keys:
1537
- print(
1538
- f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1539
- new_entry = torch.zeros_like(param) # zero init
1540
- assert exists(new_entry), 'did not find matching parameter to modify'
1541
- new_entry[:, :self.keep_dims, ...] = sd[k]
1542
- sd[k] = new_entry
1543
-
1544
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
1545
- sd, strict=False)
1546
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1547
- if len(missing) > 0:
1548
- print(f"Missing Keys: {missing}")
1549
- if len(unexpected) > 0:
1550
- print(f"Unexpected Keys: {unexpected}")
1551
-
1552
- @torch.no_grad()
1553
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1554
- quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1555
- plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1556
- use_ema_scope=True,
1557
- **kwargs):
1558
- ema_scope = self.ema_scope if use_ema_scope else nullcontext
1559
- use_ddim = ddim_steps is not None
1560
-
1561
- log = dict()
1562
- z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1563
- c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1564
- N = min(x.shape[0], N)
1565
- n_row = min(x.shape[0], n_row)
1566
- log["inputs"] = x
1567
- log["reconstruction"] = xrec
1568
- if self.model.conditioning_key is not None:
1569
- if hasattr(self.cond_stage_model, "decode"):
1570
- xc = self.cond_stage_model.decode(c)
1571
- log["conditioning"] = xc
1572
- elif self.cond_stage_key in ["caption", "txt"]:
1573
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1574
- log["conditioning"] = xc
1575
- elif self.cond_stage_key in ['class_label', 'cls']:
1576
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1577
- log['conditioning'] = xc
1578
- elif isimage(xc):
1579
- log["conditioning"] = xc
1580
- if ismap(xc):
1581
- log["original_conditioning"] = self.to_rgb(xc)
1582
-
1583
- if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1584
- log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
1585
-
1586
- if plot_diffusion_rows:
1587
- # get diffusion row
1588
- diffusion_row = list()
1589
- z_start = z[:n_row]
1590
- for t in range(self.num_timesteps):
1591
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1592
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1593
- t = t.to(self.device).long()
1594
- noise = torch.randn_like(z_start)
1595
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1596
- diffusion_row.append(self.decode_first_stage(z_noisy))
1597
-
1598
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1599
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1600
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1601
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1602
- log["diffusion_row"] = diffusion_grid
1603
-
1604
- if sample:
1605
- # get denoise row
1606
- with ema_scope("Sampling"):
1607
- samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1608
- batch_size=N, ddim=use_ddim,
1609
- ddim_steps=ddim_steps, eta=ddim_eta)
1610
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1611
- x_samples = self.decode_first_stage(samples)
1612
- log["samples"] = x_samples
1613
- if plot_denoise_rows:
1614
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1615
- log["denoise_row"] = denoise_grid
1616
-
1617
- if unconditional_guidance_scale > 1.0:
1618
- uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1619
- uc_cat = c_cat
1620
- uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1621
- with ema_scope("Sampling with classifier-free guidance"):
1622
- samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1623
- batch_size=N, ddim=use_ddim,
1624
- ddim_steps=ddim_steps, eta=ddim_eta,
1625
- unconditional_guidance_scale=unconditional_guidance_scale,
1626
- unconditional_conditioning=uc_full,
1627
- )
1628
- x_samples_cfg = self.decode_first_stage(samples_cfg)
1629
- log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1630
-
1631
- return log
1632
-
1633
-
1634
- class LatentInpaintDiffusion(LatentFinetuneDiffusion):
1635
- """
1636
- can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1637
- e.g. mask as concat and text via cross-attn.
1638
- To disable finetuning mode, set finetune_keys to None
1639
- """
1640
-
1641
- def __init__(self,
1642
- concat_keys=("mask", "masked_image"),
1643
- masked_image_key="masked_image",
1644
- *args, **kwargs
1645
- ):
1646
- super().__init__(concat_keys, *args, **kwargs)
1647
- self.masked_image_key = masked_image_key
1648
- assert self.masked_image_key in concat_keys
1649
-
1650
- @torch.no_grad()
1651
- def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1652
- # note: restricted to non-trainable encoders currently
1653
- assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1654
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1655
- force_c_encode=True, return_original_cond=True, bs=bs)
1656
-
1657
- assert exists(self.concat_keys)
1658
- c_cat = list()
1659
- for ck in self.concat_keys:
1660
- cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1661
- if bs is not None:
1662
- cc = cc[:bs]
1663
- cc = cc.to(self.device)
1664
- bchw = z.shape
1665
- if ck != self.masked_image_key:
1666
- cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1667
- else:
1668
- cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1669
- c_cat.append(cc)
1670
- c_cat = torch.cat(c_cat, dim=1)
1671
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1672
- if return_first_stage_outputs:
1673
- return z, all_conds, x, xrec, xc
1674
- return z, all_conds
1675
-
1676
- @torch.no_grad()
1677
- def log_images(self, *args, **kwargs):
1678
- log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
1679
- log["masked_image"] = rearrange(args[0]["masked_image"],
1680
- 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1681
- return log
1682
-
1683
-
1684
- class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
1685
- """
1686
- condition on monocular depth estimation
1687
- """
1688
-
1689
- def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
1690
- super().__init__(concat_keys=concat_keys, *args, **kwargs)
1691
- self.depth_model = instantiate_from_config(depth_stage_config)
1692
- self.depth_stage_key = concat_keys[0]
1693
-
1694
- @torch.no_grad()
1695
- def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1696
- # note: restricted to non-trainable encoders currently
1697
- assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
1698
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1699
- force_c_encode=True, return_original_cond=True, bs=bs)
1700
-
1701
- assert exists(self.concat_keys)
1702
- assert len(self.concat_keys) == 1
1703
- c_cat = list()
1704
- for ck in self.concat_keys:
1705
- cc = batch[ck]
1706
- if bs is not None:
1707
- cc = cc[:bs]
1708
- cc = cc.to(self.device)
1709
- cc = self.depth_model(cc)
1710
- cc = torch.nn.functional.interpolate(
1711
- cc,
1712
- size=z.shape[2:],
1713
- mode="bicubic",
1714
- align_corners=False,
1715
- )
1716
-
1717
- depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
1718
- keepdim=True)
1719
- cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
1720
- c_cat.append(cc)
1721
- c_cat = torch.cat(c_cat, dim=1)
1722
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1723
- if return_first_stage_outputs:
1724
- return z, all_conds, x, xrec, xc
1725
- return z, all_conds
1726
-
1727
- @torch.no_grad()
1728
- def log_images(self, *args, **kwargs):
1729
- log = super().log_images(*args, **kwargs)
1730
- depth = self.depth_model(args[0][self.depth_stage_key])
1731
- depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
1732
- torch.amax(depth, dim=[1, 2, 3], keepdim=True)
1733
- log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
1734
- return log
1735
-
1736
-
1737
- class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
1738
- """
1739
- condition on low-res image (and optionally on some spatial noise augmentation)
1740
- """
1741
- def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
1742
- low_scale_config=None, low_scale_key=None, *args, **kwargs):
1743
- super().__init__(concat_keys=concat_keys, *args, **kwargs)
1744
- self.reshuffle_patch_size = reshuffle_patch_size
1745
- self.low_scale_model = None
1746
- if low_scale_config is not None:
1747
- print("Initializing a low-scale model")
1748
- assert exists(low_scale_key)
1749
- self.instantiate_low_stage(low_scale_config)
1750
- self.low_scale_key = low_scale_key
1751
-
1752
- def instantiate_low_stage(self, config):
1753
- model = instantiate_from_config(config)
1754
- self.low_scale_model = model.eval()
1755
- self.low_scale_model.train = disabled_train
1756
- for param in self.low_scale_model.parameters():
1757
- param.requires_grad = False
1758
-
1759
- @torch.no_grad()
1760
- def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1761
- # note: restricted to non-trainable encoders currently
1762
- assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
1763
- z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1764
- force_c_encode=True, return_original_cond=True, bs=bs)
1765
-
1766
- assert exists(self.concat_keys)
1767
- assert len(self.concat_keys) == 1
1768
- # optionally make spatial noise_level here
1769
- c_cat = list()
1770
- noise_level = None
1771
- for ck in self.concat_keys:
1772
- cc = batch[ck]
1773
- cc = rearrange(cc, 'b h w c -> b c h w')
1774
- if exists(self.reshuffle_patch_size):
1775
- assert isinstance(self.reshuffle_patch_size, int)
1776
- cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
1777
- p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
1778
- if bs is not None:
1779
- cc = cc[:bs]
1780
- cc = cc.to(self.device)
1781
- if exists(self.low_scale_model) and ck == self.low_scale_key:
1782
- cc, noise_level = self.low_scale_model(cc)
1783
- c_cat.append(cc)
1784
- c_cat = torch.cat(c_cat, dim=1)
1785
- if exists(noise_level):
1786
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
1787
- else:
1788
- all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1789
- if return_first_stage_outputs:
1790
- return z, all_conds, x, xrec, xc
1791
- return z, all_conds
1792
-
1793
- @torch.no_grad()
1794
- def log_images(self, *args, **kwargs):
1795
- log = super().log_images(*args, **kwargs)
1796
- log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
1797
- return log
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/attention.py DELETED
@@ -1,341 +0,0 @@
1
- from inspect import isfunction
2
- import math
3
- import torch
4
- import torch.nn.functional as F
5
- from torch import nn, einsum
6
- from einops import rearrange, repeat
7
- from typing import Optional, Any
8
-
9
- from ldm.modules.diffusionmodules.util import checkpoint
10
-
11
-
12
- try:
13
- import xformers
14
- import xformers.ops
15
- XFORMERS_IS_AVAILBLE = True
16
- except:
17
- XFORMERS_IS_AVAILBLE = False
18
-
19
- # CrossAttn precision handling
20
- import os
21
- _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
22
-
23
- def exists(val):
24
- return val is not None
25
-
26
-
27
- def uniq(arr):
28
- return{el: True for el in arr}.keys()
29
-
30
-
31
- def default(val, d):
32
- if exists(val):
33
- return val
34
- return d() if isfunction(d) else d
35
-
36
-
37
- def max_neg_value(t):
38
- return -torch.finfo(t.dtype).max
39
-
40
-
41
- def init_(tensor):
42
- dim = tensor.shape[-1]
43
- std = 1 / math.sqrt(dim)
44
- tensor.uniform_(-std, std)
45
- return tensor
46
-
47
-
48
- # feedforward
49
- class GEGLU(nn.Module):
50
- def __init__(self, dim_in, dim_out):
51
- super().__init__()
52
- self.proj = nn.Linear(dim_in, dim_out * 2)
53
-
54
- def forward(self, x):
55
- x, gate = self.proj(x).chunk(2, dim=-1)
56
- return x * F.gelu(gate)
57
-
58
-
59
- class FeedForward(nn.Module):
60
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
61
- super().__init__()
62
- inner_dim = int(dim * mult)
63
- dim_out = default(dim_out, dim)
64
- project_in = nn.Sequential(
65
- nn.Linear(dim, inner_dim),
66
- nn.GELU()
67
- ) if not glu else GEGLU(dim, inner_dim)
68
-
69
- self.net = nn.Sequential(
70
- project_in,
71
- nn.Dropout(dropout),
72
- nn.Linear(inner_dim, dim_out)
73
- )
74
-
75
- def forward(self, x):
76
- return self.net(x)
77
-
78
-
79
- def zero_module(module):
80
- """
81
- Zero out the parameters of a module and return it.
82
- """
83
- for p in module.parameters():
84
- p.detach().zero_()
85
- return module
86
-
87
-
88
- def Normalize(in_channels):
89
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
90
-
91
-
92
- class SpatialSelfAttention(nn.Module):
93
- def __init__(self, in_channels):
94
- super().__init__()
95
- self.in_channels = in_channels
96
-
97
- self.norm = Normalize(in_channels)
98
- self.q = torch.nn.Conv2d(in_channels,
99
- in_channels,
100
- kernel_size=1,
101
- stride=1,
102
- padding=0)
103
- self.k = torch.nn.Conv2d(in_channels,
104
- in_channels,
105
- kernel_size=1,
106
- stride=1,
107
- padding=0)
108
- self.v = torch.nn.Conv2d(in_channels,
109
- in_channels,
110
- kernel_size=1,
111
- stride=1,
112
- padding=0)
113
- self.proj_out = torch.nn.Conv2d(in_channels,
114
- in_channels,
115
- kernel_size=1,
116
- stride=1,
117
- padding=0)
118
-
119
- def forward(self, x):
120
- h_ = x
121
- h_ = self.norm(h_)
122
- q = self.q(h_)
123
- k = self.k(h_)
124
- v = self.v(h_)
125
-
126
- # compute attention
127
- b,c,h,w = q.shape
128
- q = rearrange(q, 'b c h w -> b (h w) c')
129
- k = rearrange(k, 'b c h w -> b c (h w)')
130
- w_ = torch.einsum('bij,bjk->bik', q, k)
131
-
132
- w_ = w_ * (int(c)**(-0.5))
133
- w_ = torch.nn.functional.softmax(w_, dim=2)
134
-
135
- # attend to values
136
- v = rearrange(v, 'b c h w -> b c (h w)')
137
- w_ = rearrange(w_, 'b i j -> b j i')
138
- h_ = torch.einsum('bij,bjk->bik', v, w_)
139
- h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
140
- h_ = self.proj_out(h_)
141
-
142
- return x+h_
143
-
144
-
145
- class CrossAttention(nn.Module):
146
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
147
- super().__init__()
148
- inner_dim = dim_head * heads
149
- context_dim = default(context_dim, query_dim)
150
-
151
- self.scale = dim_head ** -0.5
152
- self.heads = heads
153
-
154
- self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
155
- self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
156
- self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
157
-
158
- self.to_out = nn.Sequential(
159
- nn.Linear(inner_dim, query_dim),
160
- nn.Dropout(dropout)
161
- )
162
-
163
- def forward(self, x, context=None, mask=None):
164
- h = self.heads
165
-
166
- q = self.to_q(x)
167
- context = default(context, x)
168
- k = self.to_k(context)
169
- v = self.to_v(context)
170
-
171
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
172
-
173
- # force cast to fp32 to avoid overflowing
174
- if _ATTN_PRECISION =="fp32":
175
- with torch.autocast(enabled=False, device_type = 'cuda'):
176
- q, k = q.float(), k.float()
177
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
178
- else:
179
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
180
-
181
- del q, k
182
-
183
- if exists(mask):
184
- mask = rearrange(mask, 'b ... -> b (...)')
185
- max_neg_value = -torch.finfo(sim.dtype).max
186
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
187
- sim.masked_fill_(~mask, max_neg_value)
188
-
189
- # attention, what we cannot get enough of
190
- sim = sim.softmax(dim=-1)
191
-
192
- out = einsum('b i j, b j d -> b i d', sim, v)
193
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
194
- return self.to_out(out)
195
-
196
-
197
- class MemoryEfficientCrossAttention(nn.Module):
198
- # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
199
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
200
- super().__init__()
201
- print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
202
- f"{heads} heads.")
203
- inner_dim = dim_head * heads
204
- context_dim = default(context_dim, query_dim)
205
-
206
- self.heads = heads
207
- self.dim_head = dim_head
208
-
209
- self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
210
- self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
211
- self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
212
-
213
- self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
214
- self.attention_op: Optional[Any] = None
215
-
216
- def forward(self, x, context=None, mask=None):
217
- q = self.to_q(x)
218
- context = default(context, x)
219
- k = self.to_k(context)
220
- v = self.to_v(context)
221
-
222
- b, _, _ = q.shape
223
- q, k, v = map(
224
- lambda t: t.unsqueeze(3)
225
- .reshape(b, t.shape[1], self.heads, self.dim_head)
226
- .permute(0, 2, 1, 3)
227
- .reshape(b * self.heads, t.shape[1], self.dim_head)
228
- .contiguous(),
229
- (q, k, v),
230
- )
231
-
232
- # actually compute the attention, what we cannot get enough of
233
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
234
-
235
- if exists(mask):
236
- raise NotImplementedError
237
- out = (
238
- out.unsqueeze(0)
239
- .reshape(b, self.heads, out.shape[1], self.dim_head)
240
- .permute(0, 2, 1, 3)
241
- .reshape(b, out.shape[1], self.heads * self.dim_head)
242
- )
243
- return self.to_out(out)
244
-
245
-
246
- class BasicTransformerBlock(nn.Module):
247
- ATTENTION_MODES = {
248
- "softmax": CrossAttention, # vanilla attention
249
- "softmax-xformers": MemoryEfficientCrossAttention
250
- }
251
- def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
252
- disable_self_attn=False):
253
- super().__init__()
254
- attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
255
- assert attn_mode in self.ATTENTION_MODES
256
- attn_cls = self.ATTENTION_MODES[attn_mode]
257
- self.disable_self_attn = disable_self_attn
258
- self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
259
- context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
260
- self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
261
- self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
262
- heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
263
- self.norm1 = nn.LayerNorm(dim)
264
- self.norm2 = nn.LayerNorm(dim)
265
- self.norm3 = nn.LayerNorm(dim)
266
- self.checkpoint = checkpoint
267
-
268
- def forward(self, x, context=None):
269
- return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
270
-
271
- def _forward(self, x, context=None):
272
- x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
273
- x = self.attn2(self.norm2(x), context=context) + x
274
- x = self.ff(self.norm3(x)) + x
275
- return x
276
-
277
-
278
- class SpatialTransformer(nn.Module):
279
- """
280
- Transformer block for image-like data.
281
- First, project the input (aka embedding)
282
- and reshape to b, t, d.
283
- Then apply standard transformer action.
284
- Finally, reshape to image
285
- NEW: use_linear for more efficiency instead of the 1x1 convs
286
- """
287
- def __init__(self, in_channels, n_heads, d_head,
288
- depth=1, dropout=0., context_dim=None,
289
- disable_self_attn=False, use_linear=False,
290
- use_checkpoint=True):
291
- super().__init__()
292
- if exists(context_dim) and not isinstance(context_dim, list):
293
- context_dim = [context_dim]
294
- self.in_channels = in_channels
295
- inner_dim = n_heads * d_head
296
- self.norm = Normalize(in_channels)
297
- if not use_linear:
298
- self.proj_in = nn.Conv2d(in_channels,
299
- inner_dim,
300
- kernel_size=1,
301
- stride=1,
302
- padding=0)
303
- else:
304
- self.proj_in = nn.Linear(in_channels, inner_dim)
305
-
306
- self.transformer_blocks = nn.ModuleList(
307
- [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
308
- disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
309
- for d in range(depth)]
310
- )
311
- if not use_linear:
312
- self.proj_out = zero_module(nn.Conv2d(inner_dim,
313
- in_channels,
314
- kernel_size=1,
315
- stride=1,
316
- padding=0))
317
- else:
318
- self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
319
- self.use_linear = use_linear
320
-
321
- def forward(self, x, context=None):
322
- # note: if no context is given, cross-attention defaults to self-attention
323
- if not isinstance(context, list):
324
- context = [context]
325
- b, c, h, w = x.shape
326
- x_in = x
327
- x = self.norm(x)
328
- if not self.use_linear:
329
- x = self.proj_in(x)
330
- x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
331
- if self.use_linear:
332
- x = self.proj_in(x)
333
- for i, block in enumerate(self.transformer_blocks):
334
- x = block(x, context=context[i])
335
- if self.use_linear:
336
- x = self.proj_out(x)
337
- x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
338
- if not self.use_linear:
339
- x = self.proj_out(x)
340
- return x + x_in
341
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/diffusionmodules/model.py DELETED
@@ -1,852 +0,0 @@
1
- # pytorch_diffusion + derived encoder decoder
2
- import math
3
- import torch
4
- import torch.nn as nn
5
- import numpy as np
6
- from einops import rearrange
7
- from typing import Optional, Any
8
-
9
- from ldm.modules.attention import MemoryEfficientCrossAttention
10
-
11
- try:
12
- import xformers
13
- import xformers.ops
14
- XFORMERS_IS_AVAILBLE = True
15
- except:
16
- XFORMERS_IS_AVAILBLE = False
17
- print("No module 'xformers'. Proceeding without it.")
18
-
19
-
20
- def get_timestep_embedding(timesteps, embedding_dim):
21
- """
22
- This matches the implementation in Denoising Diffusion Probabilistic Models:
23
- From Fairseq.
24
- Build sinusoidal embeddings.
25
- This matches the implementation in tensor2tensor, but differs slightly
26
- from the description in Section 3.5 of "Attention Is All You Need".
27
- """
28
- assert len(timesteps.shape) == 1
29
-
30
- half_dim = embedding_dim // 2
31
- emb = math.log(10000) / (half_dim - 1)
32
- emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
33
- emb = emb.to(device=timesteps.device)
34
- emb = timesteps.float()[:, None] * emb[None, :]
35
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
36
- if embedding_dim % 2 == 1: # zero pad
37
- emb = torch.nn.functional.pad(emb, (0,1,0,0))
38
- return emb
39
-
40
-
41
- def nonlinearity(x):
42
- # swish
43
- return x*torch.sigmoid(x)
44
-
45
-
46
- def Normalize(in_channels, num_groups=32):
47
- return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
48
-
49
-
50
- class Upsample(nn.Module):
51
- def __init__(self, in_channels, with_conv):
52
- super().__init__()
53
- self.with_conv = with_conv
54
- if self.with_conv:
55
- self.conv = torch.nn.Conv2d(in_channels,
56
- in_channels,
57
- kernel_size=3,
58
- stride=1,
59
- padding=1)
60
-
61
- def forward(self, x):
62
- x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
63
- if self.with_conv:
64
- x = self.conv(x)
65
- return x
66
-
67
-
68
- class Downsample(nn.Module):
69
- def __init__(self, in_channels, with_conv):
70
- super().__init__()
71
- self.with_conv = with_conv
72
- if self.with_conv:
73
- # no asymmetric padding in torch conv, must do it ourselves
74
- self.conv = torch.nn.Conv2d(in_channels,
75
- in_channels,
76
- kernel_size=3,
77
- stride=2,
78
- padding=0)
79
-
80
- def forward(self, x):
81
- if self.with_conv:
82
- pad = (0,1,0,1)
83
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
84
- x = self.conv(x)
85
- else:
86
- x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
87
- return x
88
-
89
-
90
- class ResnetBlock(nn.Module):
91
- def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
92
- dropout, temb_channels=512):
93
- super().__init__()
94
- self.in_channels = in_channels
95
- out_channels = in_channels if out_channels is None else out_channels
96
- self.out_channels = out_channels
97
- self.use_conv_shortcut = conv_shortcut
98
-
99
- self.norm1 = Normalize(in_channels)
100
- self.conv1 = torch.nn.Conv2d(in_channels,
101
- out_channels,
102
- kernel_size=3,
103
- stride=1,
104
- padding=1)
105
- if temb_channels > 0:
106
- self.temb_proj = torch.nn.Linear(temb_channels,
107
- out_channels)
108
- self.norm2 = Normalize(out_channels)
109
- self.dropout = torch.nn.Dropout(dropout)
110
- self.conv2 = torch.nn.Conv2d(out_channels,
111
- out_channels,
112
- kernel_size=3,
113
- stride=1,
114
- padding=1)
115
- if self.in_channels != self.out_channels:
116
- if self.use_conv_shortcut:
117
- self.conv_shortcut = torch.nn.Conv2d(in_channels,
118
- out_channels,
119
- kernel_size=3,
120
- stride=1,
121
- padding=1)
122
- else:
123
- self.nin_shortcut = torch.nn.Conv2d(in_channels,
124
- out_channels,
125
- kernel_size=1,
126
- stride=1,
127
- padding=0)
128
-
129
- def forward(self, x, temb):
130
- h = x
131
- h = self.norm1(h)
132
- h = nonlinearity(h)
133
- h = self.conv1(h)
134
-
135
- if temb is not None:
136
- h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
137
-
138
- h = self.norm2(h)
139
- h = nonlinearity(h)
140
- h = self.dropout(h)
141
- h = self.conv2(h)
142
-
143
- if self.in_channels != self.out_channels:
144
- if self.use_conv_shortcut:
145
- x = self.conv_shortcut(x)
146
- else:
147
- x = self.nin_shortcut(x)
148
-
149
- return x+h
150
-
151
-
152
- class AttnBlock(nn.Module):
153
- def __init__(self, in_channels):
154
- super().__init__()
155
- self.in_channels = in_channels
156
-
157
- self.norm = Normalize(in_channels)
158
- self.q = torch.nn.Conv2d(in_channels,
159
- in_channels,
160
- kernel_size=1,
161
- stride=1,
162
- padding=0)
163
- self.k = torch.nn.Conv2d(in_channels,
164
- in_channels,
165
- kernel_size=1,
166
- stride=1,
167
- padding=0)
168
- self.v = torch.nn.Conv2d(in_channels,
169
- in_channels,
170
- kernel_size=1,
171
- stride=1,
172
- padding=0)
173
- self.proj_out = torch.nn.Conv2d(in_channels,
174
- in_channels,
175
- kernel_size=1,
176
- stride=1,
177
- padding=0)
178
-
179
- def forward(self, x):
180
- h_ = x
181
- h_ = self.norm(h_)
182
- q = self.q(h_)
183
- k = self.k(h_)
184
- v = self.v(h_)
185
-
186
- # compute attention
187
- b,c,h,w = q.shape
188
- q = q.reshape(b,c,h*w)
189
- q = q.permute(0,2,1) # b,hw,c
190
- k = k.reshape(b,c,h*w) # b,c,hw
191
- w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
192
- w_ = w_ * (int(c)**(-0.5))
193
- w_ = torch.nn.functional.softmax(w_, dim=2)
194
-
195
- # attend to values
196
- v = v.reshape(b,c,h*w)
197
- w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
198
- h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
199
- h_ = h_.reshape(b,c,h,w)
200
-
201
- h_ = self.proj_out(h_)
202
-
203
- return x+h_
204
-
205
- class MemoryEfficientAttnBlock(nn.Module):
206
- """
207
- Uses xformers efficient implementation,
208
- see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
209
- Note: this is a single-head self-attention operation
210
- """
211
- #
212
- def __init__(self, in_channels):
213
- super().__init__()
214
- self.in_channels = in_channels
215
-
216
- self.norm = Normalize(in_channels)
217
- self.q = torch.nn.Conv2d(in_channels,
218
- in_channels,
219
- kernel_size=1,
220
- stride=1,
221
- padding=0)
222
- self.k = torch.nn.Conv2d(in_channels,
223
- in_channels,
224
- kernel_size=1,
225
- stride=1,
226
- padding=0)
227
- self.v = torch.nn.Conv2d(in_channels,
228
- in_channels,
229
- kernel_size=1,
230
- stride=1,
231
- padding=0)
232
- self.proj_out = torch.nn.Conv2d(in_channels,
233
- in_channels,
234
- kernel_size=1,
235
- stride=1,
236
- padding=0)
237
- self.attention_op: Optional[Any] = None
238
-
239
- def forward(self, x):
240
- h_ = x
241
- h_ = self.norm(h_)
242
- q = self.q(h_)
243
- k = self.k(h_)
244
- v = self.v(h_)
245
-
246
- # compute attention
247
- B, C, H, W = q.shape
248
- q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
249
-
250
- q, k, v = map(
251
- lambda t: t.unsqueeze(3)
252
- .reshape(B, t.shape[1], 1, C)
253
- .permute(0, 2, 1, 3)
254
- .reshape(B * 1, t.shape[1], C)
255
- .contiguous(),
256
- (q, k, v),
257
- )
258
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
259
-
260
- out = (
261
- out.unsqueeze(0)
262
- .reshape(B, 1, out.shape[1], C)
263
- .permute(0, 2, 1, 3)
264
- .reshape(B, out.shape[1], C)
265
- )
266
- out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
267
- out = self.proj_out(out)
268
- return x+out
269
-
270
-
271
- class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
272
- def forward(self, x, context=None, mask=None):
273
- b, c, h, w = x.shape
274
- x = rearrange(x, 'b c h w -> b (h w) c')
275
- out = super().forward(x, context=context, mask=mask)
276
- out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
277
- return x + out
278
-
279
-
280
- def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
281
- assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
282
- if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
283
- attn_type = "vanilla-xformers"
284
- print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
285
- if attn_type == "vanilla":
286
- assert attn_kwargs is None
287
- return AttnBlock(in_channels)
288
- elif attn_type == "vanilla-xformers":
289
- print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
290
- return MemoryEfficientAttnBlock(in_channels)
291
- elif type == "memory-efficient-cross-attn":
292
- attn_kwargs["query_dim"] = in_channels
293
- return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
294
- elif attn_type == "none":
295
- return nn.Identity(in_channels)
296
- else:
297
- raise NotImplementedError()
298
-
299
-
300
- class Model(nn.Module):
301
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
302
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
303
- resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
304
- super().__init__()
305
- if use_linear_attn: attn_type = "linear"
306
- self.ch = ch
307
- self.temb_ch = self.ch*4
308
- self.num_resolutions = len(ch_mult)
309
- self.num_res_blocks = num_res_blocks
310
- self.resolution = resolution
311
- self.in_channels = in_channels
312
-
313
- self.use_timestep = use_timestep
314
- if self.use_timestep:
315
- # timestep embedding
316
- self.temb = nn.Module()
317
- self.temb.dense = nn.ModuleList([
318
- torch.nn.Linear(self.ch,
319
- self.temb_ch),
320
- torch.nn.Linear(self.temb_ch,
321
- self.temb_ch),
322
- ])
323
-
324
- # downsampling
325
- self.conv_in = torch.nn.Conv2d(in_channels,
326
- self.ch,
327
- kernel_size=3,
328
- stride=1,
329
- padding=1)
330
-
331
- curr_res = resolution
332
- in_ch_mult = (1,)+tuple(ch_mult)
333
- self.down = nn.ModuleList()
334
- for i_level in range(self.num_resolutions):
335
- block = nn.ModuleList()
336
- attn = nn.ModuleList()
337
- block_in = ch*in_ch_mult[i_level]
338
- block_out = ch*ch_mult[i_level]
339
- for i_block in range(self.num_res_blocks):
340
- block.append(ResnetBlock(in_channels=block_in,
341
- out_channels=block_out,
342
- temb_channels=self.temb_ch,
343
- dropout=dropout))
344
- block_in = block_out
345
- if curr_res in attn_resolutions:
346
- attn.append(make_attn(block_in, attn_type=attn_type))
347
- down = nn.Module()
348
- down.block = block
349
- down.attn = attn
350
- if i_level != self.num_resolutions-1:
351
- down.downsample = Downsample(block_in, resamp_with_conv)
352
- curr_res = curr_res // 2
353
- self.down.append(down)
354
-
355
- # middle
356
- self.mid = nn.Module()
357
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
358
- out_channels=block_in,
359
- temb_channels=self.temb_ch,
360
- dropout=dropout)
361
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
362
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
363
- out_channels=block_in,
364
- temb_channels=self.temb_ch,
365
- dropout=dropout)
366
-
367
- # upsampling
368
- self.up = nn.ModuleList()
369
- for i_level in reversed(range(self.num_resolutions)):
370
- block = nn.ModuleList()
371
- attn = nn.ModuleList()
372
- block_out = ch*ch_mult[i_level]
373
- skip_in = ch*ch_mult[i_level]
374
- for i_block in range(self.num_res_blocks+1):
375
- if i_block == self.num_res_blocks:
376
- skip_in = ch*in_ch_mult[i_level]
377
- block.append(ResnetBlock(in_channels=block_in+skip_in,
378
- out_channels=block_out,
379
- temb_channels=self.temb_ch,
380
- dropout=dropout))
381
- block_in = block_out
382
- if curr_res in attn_resolutions:
383
- attn.append(make_attn(block_in, attn_type=attn_type))
384
- up = nn.Module()
385
- up.block = block
386
- up.attn = attn
387
- if i_level != 0:
388
- up.upsample = Upsample(block_in, resamp_with_conv)
389
- curr_res = curr_res * 2
390
- self.up.insert(0, up) # prepend to get consistent order
391
-
392
- # end
393
- self.norm_out = Normalize(block_in)
394
- self.conv_out = torch.nn.Conv2d(block_in,
395
- out_ch,
396
- kernel_size=3,
397
- stride=1,
398
- padding=1)
399
-
400
- def forward(self, x, t=None, context=None):
401
- #assert x.shape[2] == x.shape[3] == self.resolution
402
- if context is not None:
403
- # assume aligned context, cat along channel axis
404
- x = torch.cat((x, context), dim=1)
405
- if self.use_timestep:
406
- # timestep embedding
407
- assert t is not None
408
- temb = get_timestep_embedding(t, self.ch)
409
- temb = self.temb.dense[0](temb)
410
- temb = nonlinearity(temb)
411
- temb = self.temb.dense[1](temb)
412
- else:
413
- temb = None
414
-
415
- # downsampling
416
- hs = [self.conv_in(x)]
417
- for i_level in range(self.num_resolutions):
418
- for i_block in range(self.num_res_blocks):
419
- h = self.down[i_level].block[i_block](hs[-1], temb)
420
- if len(self.down[i_level].attn) > 0:
421
- h = self.down[i_level].attn[i_block](h)
422
- hs.append(h)
423
- if i_level != self.num_resolutions-1:
424
- hs.append(self.down[i_level].downsample(hs[-1]))
425
-
426
- # middle
427
- h = hs[-1]
428
- h = self.mid.block_1(h, temb)
429
- h = self.mid.attn_1(h)
430
- h = self.mid.block_2(h, temb)
431
-
432
- # upsampling
433
- for i_level in reversed(range(self.num_resolutions)):
434
- for i_block in range(self.num_res_blocks+1):
435
- h = self.up[i_level].block[i_block](
436
- torch.cat([h, hs.pop()], dim=1), temb)
437
- if len(self.up[i_level].attn) > 0:
438
- h = self.up[i_level].attn[i_block](h)
439
- if i_level != 0:
440
- h = self.up[i_level].upsample(h)
441
-
442
- # end
443
- h = self.norm_out(h)
444
- h = nonlinearity(h)
445
- h = self.conv_out(h)
446
- return h
447
-
448
- def get_last_layer(self):
449
- return self.conv_out.weight
450
-
451
-
452
- class Encoder(nn.Module):
453
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
454
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
455
- resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
456
- **ignore_kwargs):
457
- super().__init__()
458
- if use_linear_attn: attn_type = "linear"
459
- self.ch = ch
460
- self.temb_ch = 0
461
- self.num_resolutions = len(ch_mult)
462
- self.num_res_blocks = num_res_blocks
463
- self.resolution = resolution
464
- self.in_channels = in_channels
465
-
466
- # downsampling
467
- self.conv_in = torch.nn.Conv2d(in_channels,
468
- self.ch,
469
- kernel_size=3,
470
- stride=1,
471
- padding=1)
472
-
473
- curr_res = resolution
474
- in_ch_mult = (1,)+tuple(ch_mult)
475
- self.in_ch_mult = in_ch_mult
476
- self.down = nn.ModuleList()
477
- for i_level in range(self.num_resolutions):
478
- block = nn.ModuleList()
479
- attn = nn.ModuleList()
480
- block_in = ch*in_ch_mult[i_level]
481
- block_out = ch*ch_mult[i_level]
482
- for i_block in range(self.num_res_blocks):
483
- block.append(ResnetBlock(in_channels=block_in,
484
- out_channels=block_out,
485
- temb_channels=self.temb_ch,
486
- dropout=dropout))
487
- block_in = block_out
488
- if curr_res in attn_resolutions:
489
- attn.append(make_attn(block_in, attn_type=attn_type))
490
- down = nn.Module()
491
- down.block = block
492
- down.attn = attn
493
- if i_level != self.num_resolutions-1:
494
- down.downsample = Downsample(block_in, resamp_with_conv)
495
- curr_res = curr_res // 2
496
- self.down.append(down)
497
-
498
- # middle
499
- self.mid = nn.Module()
500
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
501
- out_channels=block_in,
502
- temb_channels=self.temb_ch,
503
- dropout=dropout)
504
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
505
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
506
- out_channels=block_in,
507
- temb_channels=self.temb_ch,
508
- dropout=dropout)
509
-
510
- # end
511
- self.norm_out = Normalize(block_in)
512
- self.conv_out = torch.nn.Conv2d(block_in,
513
- 2*z_channels if double_z else z_channels,
514
- kernel_size=3,
515
- stride=1,
516
- padding=1)
517
-
518
- def forward(self, x):
519
- # timestep embedding
520
- temb = None
521
-
522
- # downsampling
523
- hs = [self.conv_in(x)]
524
- for i_level in range(self.num_resolutions):
525
- for i_block in range(self.num_res_blocks):
526
- h = self.down[i_level].block[i_block](hs[-1], temb)
527
- if len(self.down[i_level].attn) > 0:
528
- h = self.down[i_level].attn[i_block](h)
529
- hs.append(h)
530
- if i_level != self.num_resolutions-1:
531
- hs.append(self.down[i_level].downsample(hs[-1]))
532
-
533
- # middle
534
- h = hs[-1]
535
- h = self.mid.block_1(h, temb)
536
- h = self.mid.attn_1(h)
537
- h = self.mid.block_2(h, temb)
538
-
539
- # end
540
- h = self.norm_out(h)
541
- h = nonlinearity(h)
542
- h = self.conv_out(h)
543
- return h
544
-
545
-
546
- class Decoder(nn.Module):
547
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
548
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
549
- resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
550
- attn_type="vanilla", **ignorekwargs):
551
- super().__init__()
552
- if use_linear_attn: attn_type = "linear"
553
- self.ch = ch
554
- self.temb_ch = 0
555
- self.num_resolutions = len(ch_mult)
556
- self.num_res_blocks = num_res_blocks
557
- self.resolution = resolution
558
- self.in_channels = in_channels
559
- self.give_pre_end = give_pre_end
560
- self.tanh_out = tanh_out
561
-
562
- # compute in_ch_mult, block_in and curr_res at lowest res
563
- in_ch_mult = (1,)+tuple(ch_mult)
564
- block_in = ch*ch_mult[self.num_resolutions-1]
565
- curr_res = resolution // 2**(self.num_resolutions-1)
566
- self.z_shape = (1,z_channels,curr_res,curr_res)
567
- print("Working with z of shape {} = {} dimensions.".format(
568
- self.z_shape, np.prod(self.z_shape)))
569
-
570
- # z to block_in
571
- self.conv_in = torch.nn.Conv2d(z_channels,
572
- block_in,
573
- kernel_size=3,
574
- stride=1,
575
- padding=1)
576
-
577
- # middle
578
- self.mid = nn.Module()
579
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
580
- out_channels=block_in,
581
- temb_channels=self.temb_ch,
582
- dropout=dropout)
583
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
584
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
585
- out_channels=block_in,
586
- temb_channels=self.temb_ch,
587
- dropout=dropout)
588
-
589
- # upsampling
590
- self.up = nn.ModuleList()
591
- for i_level in reversed(range(self.num_resolutions)):
592
- block = nn.ModuleList()
593
- attn = nn.ModuleList()
594
- block_out = ch*ch_mult[i_level]
595
- for i_block in range(self.num_res_blocks+1):
596
- block.append(ResnetBlock(in_channels=block_in,
597
- out_channels=block_out,
598
- temb_channels=self.temb_ch,
599
- dropout=dropout))
600
- block_in = block_out
601
- if curr_res in attn_resolutions:
602
- attn.append(make_attn(block_in, attn_type=attn_type))
603
- up = nn.Module()
604
- up.block = block
605
- up.attn = attn
606
- if i_level != 0:
607
- up.upsample = Upsample(block_in, resamp_with_conv)
608
- curr_res = curr_res * 2
609
- self.up.insert(0, up) # prepend to get consistent order
610
-
611
- # end
612
- self.norm_out = Normalize(block_in)
613
- self.conv_out = torch.nn.Conv2d(block_in,
614
- out_ch,
615
- kernel_size=3,
616
- stride=1,
617
- padding=1)
618
-
619
- def forward(self, z):
620
- #assert z.shape[1:] == self.z_shape[1:]
621
- self.last_z_shape = z.shape
622
-
623
- # timestep embedding
624
- temb = None
625
-
626
- # z to block_in
627
- h = self.conv_in(z)
628
-
629
- # middle
630
- h = self.mid.block_1(h, temb)
631
- h = self.mid.attn_1(h)
632
- h = self.mid.block_2(h, temb)
633
-
634
- # upsampling
635
- for i_level in reversed(range(self.num_resolutions)):
636
- for i_block in range(self.num_res_blocks+1):
637
- h = self.up[i_level].block[i_block](h, temb)
638
- if len(self.up[i_level].attn) > 0:
639
- h = self.up[i_level].attn[i_block](h)
640
- if i_level != 0:
641
- h = self.up[i_level].upsample(h)
642
-
643
- # end
644
- if self.give_pre_end:
645
- return h
646
-
647
- h = self.norm_out(h)
648
- h = nonlinearity(h)
649
- h = self.conv_out(h)
650
- if self.tanh_out:
651
- h = torch.tanh(h)
652
- return h
653
-
654
-
655
- class SimpleDecoder(nn.Module):
656
- def __init__(self, in_channels, out_channels, *args, **kwargs):
657
- super().__init__()
658
- self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
659
- ResnetBlock(in_channels=in_channels,
660
- out_channels=2 * in_channels,
661
- temb_channels=0, dropout=0.0),
662
- ResnetBlock(in_channels=2 * in_channels,
663
- out_channels=4 * in_channels,
664
- temb_channels=0, dropout=0.0),
665
- ResnetBlock(in_channels=4 * in_channels,
666
- out_channels=2 * in_channels,
667
- temb_channels=0, dropout=0.0),
668
- nn.Conv2d(2*in_channels, in_channels, 1),
669
- Upsample(in_channels, with_conv=True)])
670
- # end
671
- self.norm_out = Normalize(in_channels)
672
- self.conv_out = torch.nn.Conv2d(in_channels,
673
- out_channels,
674
- kernel_size=3,
675
- stride=1,
676
- padding=1)
677
-
678
- def forward(self, x):
679
- for i, layer in enumerate(self.model):
680
- if i in [1,2,3]:
681
- x = layer(x, None)
682
- else:
683
- x = layer(x)
684
-
685
- h = self.norm_out(x)
686
- h = nonlinearity(h)
687
- x = self.conv_out(h)
688
- return x
689
-
690
-
691
- class UpsampleDecoder(nn.Module):
692
- def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
693
- ch_mult=(2,2), dropout=0.0):
694
- super().__init__()
695
- # upsampling
696
- self.temb_ch = 0
697
- self.num_resolutions = len(ch_mult)
698
- self.num_res_blocks = num_res_blocks
699
- block_in = in_channels
700
- curr_res = resolution // 2 ** (self.num_resolutions - 1)
701
- self.res_blocks = nn.ModuleList()
702
- self.upsample_blocks = nn.ModuleList()
703
- for i_level in range(self.num_resolutions):
704
- res_block = []
705
- block_out = ch * ch_mult[i_level]
706
- for i_block in range(self.num_res_blocks + 1):
707
- res_block.append(ResnetBlock(in_channels=block_in,
708
- out_channels=block_out,
709
- temb_channels=self.temb_ch,
710
- dropout=dropout))
711
- block_in = block_out
712
- self.res_blocks.append(nn.ModuleList(res_block))
713
- if i_level != self.num_resolutions - 1:
714
- self.upsample_blocks.append(Upsample(block_in, True))
715
- curr_res = curr_res * 2
716
-
717
- # end
718
- self.norm_out = Normalize(block_in)
719
- self.conv_out = torch.nn.Conv2d(block_in,
720
- out_channels,
721
- kernel_size=3,
722
- stride=1,
723
- padding=1)
724
-
725
- def forward(self, x):
726
- # upsampling
727
- h = x
728
- for k, i_level in enumerate(range(self.num_resolutions)):
729
- for i_block in range(self.num_res_blocks + 1):
730
- h = self.res_blocks[i_level][i_block](h, None)
731
- if i_level != self.num_resolutions - 1:
732
- h = self.upsample_blocks[k](h)
733
- h = self.norm_out(h)
734
- h = nonlinearity(h)
735
- h = self.conv_out(h)
736
- return h
737
-
738
-
739
- class LatentRescaler(nn.Module):
740
- def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
741
- super().__init__()
742
- # residual block, interpolate, residual block
743
- self.factor = factor
744
- self.conv_in = nn.Conv2d(in_channels,
745
- mid_channels,
746
- kernel_size=3,
747
- stride=1,
748
- padding=1)
749
- self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
750
- out_channels=mid_channels,
751
- temb_channels=0,
752
- dropout=0.0) for _ in range(depth)])
753
- self.attn = AttnBlock(mid_channels)
754
- self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
755
- out_channels=mid_channels,
756
- temb_channels=0,
757
- dropout=0.0) for _ in range(depth)])
758
-
759
- self.conv_out = nn.Conv2d(mid_channels,
760
- out_channels,
761
- kernel_size=1,
762
- )
763
-
764
- def forward(self, x):
765
- x = self.conv_in(x)
766
- for block in self.res_block1:
767
- x = block(x, None)
768
- x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
769
- x = self.attn(x)
770
- for block in self.res_block2:
771
- x = block(x, None)
772
- x = self.conv_out(x)
773
- return x
774
-
775
-
776
- class MergedRescaleEncoder(nn.Module):
777
- def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
778
- attn_resolutions, dropout=0.0, resamp_with_conv=True,
779
- ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
780
- super().__init__()
781
- intermediate_chn = ch * ch_mult[-1]
782
- self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
783
- z_channels=intermediate_chn, double_z=False, resolution=resolution,
784
- attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
785
- out_ch=None)
786
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
787
- mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
788
-
789
- def forward(self, x):
790
- x = self.encoder(x)
791
- x = self.rescaler(x)
792
- return x
793
-
794
-
795
- class MergedRescaleDecoder(nn.Module):
796
- def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
797
- dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
798
- super().__init__()
799
- tmp_chn = z_channels*ch_mult[-1]
800
- self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
801
- resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
802
- ch_mult=ch_mult, resolution=resolution, ch=ch)
803
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
804
- out_channels=tmp_chn, depth=rescale_module_depth)
805
-
806
- def forward(self, x):
807
- x = self.rescaler(x)
808
- x = self.decoder(x)
809
- return x
810
-
811
-
812
- class Upsampler(nn.Module):
813
- def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
814
- super().__init__()
815
- assert out_size >= in_size
816
- num_blocks = int(np.log2(out_size//in_size))+1
817
- factor_up = 1.+ (out_size % in_size)
818
- print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
819
- self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
820
- out_channels=in_channels)
821
- self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
822
- attn_resolutions=[], in_channels=None, ch=in_channels,
823
- ch_mult=[ch_mult for _ in range(num_blocks)])
824
-
825
- def forward(self, x):
826
- x = self.rescaler(x)
827
- x = self.decoder(x)
828
- return x
829
-
830
-
831
- class Resize(nn.Module):
832
- def __init__(self, in_channels=None, learned=False, mode="bilinear"):
833
- super().__init__()
834
- self.with_conv = learned
835
- self.mode = mode
836
- if self.with_conv:
837
- print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
838
- raise NotImplementedError()
839
- assert in_channels is not None
840
- # no asymmetric padding in torch conv, must do it ourselves
841
- self.conv = torch.nn.Conv2d(in_channels,
842
- in_channels,
843
- kernel_size=4,
844
- stride=2,
845
- padding=1)
846
-
847
- def forward(self, x, scale_factor=1.0):
848
- if scale_factor==1.0:
849
- return x
850
- else:
851
- x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
852
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/diffusionmodules/openaimodel.py DELETED
@@ -1,786 +0,0 @@
1
- from abc import abstractmethod
2
- import math
3
-
4
- import numpy as np
5
- import torch as th
6
- import torch.nn as nn
7
- import torch.nn.functional as F
8
-
9
- from ldm.modules.diffusionmodules.util import (
10
- checkpoint,
11
- conv_nd,
12
- linear,
13
- avg_pool_nd,
14
- zero_module,
15
- normalization,
16
- timestep_embedding,
17
- )
18
- from ldm.modules.attention import SpatialTransformer
19
- from ldm.util import exists
20
-
21
-
22
- # dummy replace
23
- def convert_module_to_f16(x):
24
- pass
25
-
26
- def convert_module_to_f32(x):
27
- pass
28
-
29
-
30
- ## go
31
- class AttentionPool2d(nn.Module):
32
- """
33
- Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
34
- """
35
-
36
- def __init__(
37
- self,
38
- spacial_dim: int,
39
- embed_dim: int,
40
- num_heads_channels: int,
41
- output_dim: int = None,
42
- ):
43
- super().__init__()
44
- self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
45
- self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
46
- self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
47
- self.num_heads = embed_dim // num_heads_channels
48
- self.attention = QKVAttention(self.num_heads)
49
-
50
- def forward(self, x):
51
- b, c, *_spatial = x.shape
52
- x = x.reshape(b, c, -1) # NC(HW)
53
- x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
54
- x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
55
- x = self.qkv_proj(x)
56
- x = self.attention(x)
57
- x = self.c_proj(x)
58
- return x[:, :, 0]
59
-
60
-
61
- class TimestepBlock(nn.Module):
62
- """
63
- Any module where forward() takes timestep embeddings as a second argument.
64
- """
65
-
66
- @abstractmethod
67
- def forward(self, x, emb):
68
- """
69
- Apply the module to `x` given `emb` timestep embeddings.
70
- """
71
-
72
-
73
- class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
74
- """
75
- A sequential module that passes timestep embeddings to the children that
76
- support it as an extra input.
77
- """
78
-
79
- def forward(self, x, emb, context=None):
80
- for layer in self:
81
- if isinstance(layer, TimestepBlock):
82
- x = layer(x, emb)
83
- elif isinstance(layer, SpatialTransformer):
84
- x = layer(x, context)
85
- else:
86
- x = layer(x)
87
- return x
88
-
89
-
90
- class Upsample(nn.Module):
91
- """
92
- An upsampling layer with an optional convolution.
93
- :param channels: channels in the inputs and outputs.
94
- :param use_conv: a bool determining if a convolution is applied.
95
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
96
- upsampling occurs in the inner-two dimensions.
97
- """
98
-
99
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
100
- super().__init__()
101
- self.channels = channels
102
- self.out_channels = out_channels or channels
103
- self.use_conv = use_conv
104
- self.dims = dims
105
- if use_conv:
106
- self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
107
-
108
- def forward(self, x):
109
- assert x.shape[1] == self.channels
110
- if self.dims == 3:
111
- x = F.interpolate(
112
- x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
113
- )
114
- else:
115
- x = F.interpolate(x, scale_factor=2, mode="nearest")
116
- if self.use_conv:
117
- x = self.conv(x)
118
- return x
119
-
120
- class TransposedUpsample(nn.Module):
121
- 'Learned 2x upsampling without padding'
122
- def __init__(self, channels, out_channels=None, ks=5):
123
- super().__init__()
124
- self.channels = channels
125
- self.out_channels = out_channels or channels
126
-
127
- self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
128
-
129
- def forward(self,x):
130
- return self.up(x)
131
-
132
-
133
- class Downsample(nn.Module):
134
- """
135
- A downsampling layer with an optional convolution.
136
- :param channels: channels in the inputs and outputs.
137
- :param use_conv: a bool determining if a convolution is applied.
138
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
139
- downsampling occurs in the inner-two dimensions.
140
- """
141
-
142
- def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
143
- super().__init__()
144
- self.channels = channels
145
- self.out_channels = out_channels or channels
146
- self.use_conv = use_conv
147
- self.dims = dims
148
- stride = 2 if dims != 3 else (1, 2, 2)
149
- if use_conv:
150
- self.op = conv_nd(
151
- dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
152
- )
153
- else:
154
- assert self.channels == self.out_channels
155
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
156
-
157
- def forward(self, x):
158
- assert x.shape[1] == self.channels
159
- return self.op(x)
160
-
161
-
162
- class ResBlock(TimestepBlock):
163
- """
164
- A residual block that can optionally change the number of channels.
165
- :param channels: the number of input channels.
166
- :param emb_channels: the number of timestep embedding channels.
167
- :param dropout: the rate of dropout.
168
- :param out_channels: if specified, the number of out channels.
169
- :param use_conv: if True and out_channels is specified, use a spatial
170
- convolution instead of a smaller 1x1 convolution to change the
171
- channels in the skip connection.
172
- :param dims: determines if the signal is 1D, 2D, or 3D.
173
- :param use_checkpoint: if True, use gradient checkpointing on this module.
174
- :param up: if True, use this block for upsampling.
175
- :param down: if True, use this block for downsampling.
176
- """
177
-
178
- def __init__(
179
- self,
180
- channels,
181
- emb_channels,
182
- dropout,
183
- out_channels=None,
184
- use_conv=False,
185
- use_scale_shift_norm=False,
186
- dims=2,
187
- use_checkpoint=False,
188
- up=False,
189
- down=False,
190
- ):
191
- super().__init__()
192
- self.channels = channels
193
- self.emb_channels = emb_channels
194
- self.dropout = dropout
195
- self.out_channels = out_channels or channels
196
- self.use_conv = use_conv
197
- self.use_checkpoint = use_checkpoint
198
- self.use_scale_shift_norm = use_scale_shift_norm
199
-
200
- self.in_layers = nn.Sequential(
201
- normalization(channels),
202
- nn.SiLU(),
203
- conv_nd(dims, channels, self.out_channels, 3, padding=1),
204
- )
205
-
206
- self.updown = up or down
207
-
208
- if up:
209
- self.h_upd = Upsample(channels, False, dims)
210
- self.x_upd = Upsample(channels, False, dims)
211
- elif down:
212
- self.h_upd = Downsample(channels, False, dims)
213
- self.x_upd = Downsample(channels, False, dims)
214
- else:
215
- self.h_upd = self.x_upd = nn.Identity()
216
-
217
- self.emb_layers = nn.Sequential(
218
- nn.SiLU(),
219
- linear(
220
- emb_channels,
221
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
222
- ),
223
- )
224
- self.out_layers = nn.Sequential(
225
- normalization(self.out_channels),
226
- nn.SiLU(),
227
- nn.Dropout(p=dropout),
228
- zero_module(
229
- conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
230
- ),
231
- )
232
-
233
- if self.out_channels == channels:
234
- self.skip_connection = nn.Identity()
235
- elif use_conv:
236
- self.skip_connection = conv_nd(
237
- dims, channels, self.out_channels, 3, padding=1
238
- )
239
- else:
240
- self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
241
-
242
- def forward(self, x, emb):
243
- """
244
- Apply the block to a Tensor, conditioned on a timestep embedding.
245
- :param x: an [N x C x ...] Tensor of features.
246
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
247
- :return: an [N x C x ...] Tensor of outputs.
248
- """
249
- return checkpoint(
250
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
251
- )
252
-
253
-
254
- def _forward(self, x, emb):
255
- if self.updown:
256
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
257
- h = in_rest(x)
258
- h = self.h_upd(h)
259
- x = self.x_upd(x)
260
- h = in_conv(h)
261
- else:
262
- h = self.in_layers(x)
263
- emb_out = self.emb_layers(emb).type(h.dtype)
264
- while len(emb_out.shape) < len(h.shape):
265
- emb_out = emb_out[..., None]
266
- if self.use_scale_shift_norm:
267
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
268
- scale, shift = th.chunk(emb_out, 2, dim=1)
269
- h = out_norm(h) * (1 + scale) + shift
270
- h = out_rest(h)
271
- else:
272
- h = h + emb_out
273
- h = self.out_layers(h)
274
- return self.skip_connection(x) + h
275
-
276
-
277
- class AttentionBlock(nn.Module):
278
- """
279
- An attention block that allows spatial positions to attend to each other.
280
- Originally ported from here, but adapted to the N-d case.
281
- https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
282
- """
283
-
284
- def __init__(
285
- self,
286
- channels,
287
- num_heads=1,
288
- num_head_channels=-1,
289
- use_checkpoint=False,
290
- use_new_attention_order=False,
291
- ):
292
- super().__init__()
293
- self.channels = channels
294
- if num_head_channels == -1:
295
- self.num_heads = num_heads
296
- else:
297
- assert (
298
- channels % num_head_channels == 0
299
- ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
300
- self.num_heads = channels // num_head_channels
301
- self.use_checkpoint = use_checkpoint
302
- self.norm = normalization(channels)
303
- self.qkv = conv_nd(1, channels, channels * 3, 1)
304
- if use_new_attention_order:
305
- # split qkv before split heads
306
- self.attention = QKVAttention(self.num_heads)
307
- else:
308
- # split heads before split qkv
309
- self.attention = QKVAttentionLegacy(self.num_heads)
310
-
311
- self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
312
-
313
- def forward(self, x):
314
- return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
315
- #return pt_checkpoint(self._forward, x) # pytorch
316
-
317
- def _forward(self, x):
318
- b, c, *spatial = x.shape
319
- x = x.reshape(b, c, -1)
320
- qkv = self.qkv(self.norm(x))
321
- h = self.attention(qkv)
322
- h = self.proj_out(h)
323
- return (x + h).reshape(b, c, *spatial)
324
-
325
-
326
- def count_flops_attn(model, _x, y):
327
- """
328
- A counter for the `thop` package to count the operations in an
329
- attention operation.
330
- Meant to be used like:
331
- macs, params = thop.profile(
332
- model,
333
- inputs=(inputs, timestamps),
334
- custom_ops={QKVAttention: QKVAttention.count_flops},
335
- )
336
- """
337
- b, c, *spatial = y[0].shape
338
- num_spatial = int(np.prod(spatial))
339
- # We perform two matmuls with the same number of ops.
340
- # The first computes the weight matrix, the second computes
341
- # the combination of the value vectors.
342
- matmul_ops = 2 * b * (num_spatial ** 2) * c
343
- model.total_ops += th.DoubleTensor([matmul_ops])
344
-
345
-
346
- class QKVAttentionLegacy(nn.Module):
347
- """
348
- A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
349
- """
350
-
351
- def __init__(self, n_heads):
352
- super().__init__()
353
- self.n_heads = n_heads
354
-
355
- def forward(self, qkv):
356
- """
357
- Apply QKV attention.
358
- :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
359
- :return: an [N x (H * C) x T] tensor after attention.
360
- """
361
- bs, width, length = qkv.shape
362
- assert width % (3 * self.n_heads) == 0
363
- ch = width // (3 * self.n_heads)
364
- q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
365
- scale = 1 / math.sqrt(math.sqrt(ch))
366
- weight = th.einsum(
367
- "bct,bcs->bts", q * scale, k * scale
368
- ) # More stable with f16 than dividing afterwards
369
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
370
- a = th.einsum("bts,bcs->bct", weight, v)
371
- return a.reshape(bs, -1, length)
372
-
373
- @staticmethod
374
- def count_flops(model, _x, y):
375
- return count_flops_attn(model, _x, y)
376
-
377
-
378
- class QKVAttention(nn.Module):
379
- """
380
- A module which performs QKV attention and splits in a different order.
381
- """
382
-
383
- def __init__(self, n_heads):
384
- super().__init__()
385
- self.n_heads = n_heads
386
-
387
- def forward(self, qkv):
388
- """
389
- Apply QKV attention.
390
- :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
391
- :return: an [N x (H * C) x T] tensor after attention.
392
- """
393
- bs, width, length = qkv.shape
394
- assert width % (3 * self.n_heads) == 0
395
- ch = width // (3 * self.n_heads)
396
- q, k, v = qkv.chunk(3, dim=1)
397
- scale = 1 / math.sqrt(math.sqrt(ch))
398
- weight = th.einsum(
399
- "bct,bcs->bts",
400
- (q * scale).view(bs * self.n_heads, ch, length),
401
- (k * scale).view(bs * self.n_heads, ch, length),
402
- ) # More stable with f16 than dividing afterwards
403
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
404
- a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
405
- return a.reshape(bs, -1, length)
406
-
407
- @staticmethod
408
- def count_flops(model, _x, y):
409
- return count_flops_attn(model, _x, y)
410
-
411
-
412
- class UNetModel(nn.Module):
413
- """
414
- The full UNet model with attention and timestep embedding.
415
- :param in_channels: channels in the input Tensor.
416
- :param model_channels: base channel count for the model.
417
- :param out_channels: channels in the output Tensor.
418
- :param num_res_blocks: number of residual blocks per downsample.
419
- :param attention_resolutions: a collection of downsample rates at which
420
- attention will take place. May be a set, list, or tuple.
421
- For example, if this contains 4, then at 4x downsampling, attention
422
- will be used.
423
- :param dropout: the dropout probability.
424
- :param channel_mult: channel multiplier for each level of the UNet.
425
- :param conv_resample: if True, use learned convolutions for upsampling and
426
- downsampling.
427
- :param dims: determines if the signal is 1D, 2D, or 3D.
428
- :param num_classes: if specified (as an int), then this model will be
429
- class-conditional with `num_classes` classes.
430
- :param use_checkpoint: use gradient checkpointing to reduce memory usage.
431
- :param num_heads: the number of attention heads in each attention layer.
432
- :param num_heads_channels: if specified, ignore num_heads and instead use
433
- a fixed channel width per attention head.
434
- :param num_heads_upsample: works with num_heads to set a different number
435
- of heads for upsampling. Deprecated.
436
- :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
437
- :param resblock_updown: use residual blocks for up/downsampling.
438
- :param use_new_attention_order: use a different attention pattern for potentially
439
- increased efficiency.
440
- """
441
-
442
- def __init__(
443
- self,
444
- image_size,
445
- in_channels,
446
- model_channels,
447
- out_channels,
448
- num_res_blocks,
449
- attention_resolutions,
450
- dropout=0,
451
- channel_mult=(1, 2, 4, 8),
452
- conv_resample=True,
453
- dims=2,
454
- num_classes=None,
455
- use_checkpoint=False,
456
- use_fp16=False,
457
- num_heads=-1,
458
- num_head_channels=-1,
459
- num_heads_upsample=-1,
460
- use_scale_shift_norm=False,
461
- resblock_updown=False,
462
- use_new_attention_order=False,
463
- use_spatial_transformer=False, # custom transformer support
464
- transformer_depth=1, # custom transformer support
465
- context_dim=None, # custom transformer support
466
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
467
- legacy=True,
468
- disable_self_attentions=None,
469
- num_attention_blocks=None,
470
- disable_middle_self_attn=False,
471
- use_linear_in_transformer=False,
472
- ):
473
- super().__init__()
474
- if use_spatial_transformer:
475
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
476
-
477
- if context_dim is not None:
478
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
479
- from omegaconf.listconfig import ListConfig
480
- if type(context_dim) == ListConfig:
481
- context_dim = list(context_dim)
482
-
483
- if num_heads_upsample == -1:
484
- num_heads_upsample = num_heads
485
-
486
- if num_heads == -1:
487
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
488
-
489
- if num_head_channels == -1:
490
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
491
-
492
- self.image_size = image_size
493
- self.in_channels = in_channels
494
- self.model_channels = model_channels
495
- self.out_channels = out_channels
496
- if isinstance(num_res_blocks, int):
497
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
498
- else:
499
- if len(num_res_blocks) != len(channel_mult):
500
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
501
- "as a list/tuple (per-level) with the same length as channel_mult")
502
- self.num_res_blocks = num_res_blocks
503
- if disable_self_attentions is not None:
504
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
505
- assert len(disable_self_attentions) == len(channel_mult)
506
- if num_attention_blocks is not None:
507
- assert len(num_attention_blocks) == len(self.num_res_blocks)
508
- assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
509
- print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
510
- f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
511
- f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
512
- f"attention will still not be set.")
513
-
514
- self.attention_resolutions = attention_resolutions
515
- self.dropout = dropout
516
- self.channel_mult = channel_mult
517
- self.conv_resample = conv_resample
518
- self.num_classes = num_classes
519
- self.use_checkpoint = use_checkpoint
520
- self.dtype = th.float16 if use_fp16 else th.float32
521
- self.num_heads = num_heads
522
- self.num_head_channels = num_head_channels
523
- self.num_heads_upsample = num_heads_upsample
524
- self.predict_codebook_ids = n_embed is not None
525
-
526
- time_embed_dim = model_channels * 4
527
- self.time_embed = nn.Sequential(
528
- linear(model_channels, time_embed_dim),
529
- nn.SiLU(),
530
- linear(time_embed_dim, time_embed_dim),
531
- )
532
-
533
- if self.num_classes is not None:
534
- if isinstance(self.num_classes, int):
535
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
536
- elif self.num_classes == "continuous":
537
- print("setting up linear c_adm embedding layer")
538
- self.label_emb = nn.Linear(1, time_embed_dim)
539
- else:
540
- raise ValueError()
541
-
542
- self.input_blocks = nn.ModuleList(
543
- [
544
- TimestepEmbedSequential(
545
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
546
- )
547
- ]
548
- )
549
- self._feature_size = model_channels
550
- input_block_chans = [model_channels]
551
- ch = model_channels
552
- ds = 1
553
- for level, mult in enumerate(channel_mult):
554
- for nr in range(self.num_res_blocks[level]):
555
- layers = [
556
- ResBlock(
557
- ch,
558
- time_embed_dim,
559
- dropout,
560
- out_channels=mult * model_channels,
561
- dims=dims,
562
- use_checkpoint=use_checkpoint,
563
- use_scale_shift_norm=use_scale_shift_norm,
564
- )
565
- ]
566
- ch = mult * model_channels
567
- if ds in attention_resolutions:
568
- if num_head_channels == -1:
569
- dim_head = ch // num_heads
570
- else:
571
- num_heads = ch // num_head_channels
572
- dim_head = num_head_channels
573
- if legacy:
574
- #num_heads = 1
575
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
576
- if exists(disable_self_attentions):
577
- disabled_sa = disable_self_attentions[level]
578
- else:
579
- disabled_sa = False
580
-
581
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
582
- layers.append(
583
- AttentionBlock(
584
- ch,
585
- use_checkpoint=use_checkpoint,
586
- num_heads=num_heads,
587
- num_head_channels=dim_head,
588
- use_new_attention_order=use_new_attention_order,
589
- ) if not use_spatial_transformer else SpatialTransformer(
590
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
591
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
592
- use_checkpoint=use_checkpoint
593
- )
594
- )
595
- self.input_blocks.append(TimestepEmbedSequential(*layers))
596
- self._feature_size += ch
597
- input_block_chans.append(ch)
598
- if level != len(channel_mult) - 1:
599
- out_ch = ch
600
- self.input_blocks.append(
601
- TimestepEmbedSequential(
602
- ResBlock(
603
- ch,
604
- time_embed_dim,
605
- dropout,
606
- out_channels=out_ch,
607
- dims=dims,
608
- use_checkpoint=use_checkpoint,
609
- use_scale_shift_norm=use_scale_shift_norm,
610
- down=True,
611
- )
612
- if resblock_updown
613
- else Downsample(
614
- ch, conv_resample, dims=dims, out_channels=out_ch
615
- )
616
- )
617
- )
618
- ch = out_ch
619
- input_block_chans.append(ch)
620
- ds *= 2
621
- self._feature_size += ch
622
-
623
- if num_head_channels == -1:
624
- dim_head = ch // num_heads
625
- else:
626
- num_heads = ch // num_head_channels
627
- dim_head = num_head_channels
628
- if legacy:
629
- #num_heads = 1
630
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
631
- self.middle_block = TimestepEmbedSequential(
632
- ResBlock(
633
- ch,
634
- time_embed_dim,
635
- dropout,
636
- dims=dims,
637
- use_checkpoint=use_checkpoint,
638
- use_scale_shift_norm=use_scale_shift_norm,
639
- ),
640
- AttentionBlock(
641
- ch,
642
- use_checkpoint=use_checkpoint,
643
- num_heads=num_heads,
644
- num_head_channels=dim_head,
645
- use_new_attention_order=use_new_attention_order,
646
- ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
647
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
648
- disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
649
- use_checkpoint=use_checkpoint
650
- ),
651
- ResBlock(
652
- ch,
653
- time_embed_dim,
654
- dropout,
655
- dims=dims,
656
- use_checkpoint=use_checkpoint,
657
- use_scale_shift_norm=use_scale_shift_norm,
658
- ),
659
- )
660
- self._feature_size += ch
661
-
662
- self.output_blocks = nn.ModuleList([])
663
- for level, mult in list(enumerate(channel_mult))[::-1]:
664
- for i in range(self.num_res_blocks[level] + 1):
665
- ich = input_block_chans.pop()
666
- layers = [
667
- ResBlock(
668
- ch + ich,
669
- time_embed_dim,
670
- dropout,
671
- out_channels=model_channels * mult,
672
- dims=dims,
673
- use_checkpoint=use_checkpoint,
674
- use_scale_shift_norm=use_scale_shift_norm,
675
- )
676
- ]
677
- ch = model_channels * mult
678
- if ds in attention_resolutions:
679
- if num_head_channels == -1:
680
- dim_head = ch // num_heads
681
- else:
682
- num_heads = ch // num_head_channels
683
- dim_head = num_head_channels
684
- if legacy:
685
- #num_heads = 1
686
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
687
- if exists(disable_self_attentions):
688
- disabled_sa = disable_self_attentions[level]
689
- else:
690
- disabled_sa = False
691
-
692
- if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
693
- layers.append(
694
- AttentionBlock(
695
- ch,
696
- use_checkpoint=use_checkpoint,
697
- num_heads=num_heads_upsample,
698
- num_head_channels=dim_head,
699
- use_new_attention_order=use_new_attention_order,
700
- ) if not use_spatial_transformer else SpatialTransformer(
701
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
702
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
703
- use_checkpoint=use_checkpoint
704
- )
705
- )
706
- if level and i == self.num_res_blocks[level]:
707
- out_ch = ch
708
- layers.append(
709
- ResBlock(
710
- ch,
711
- time_embed_dim,
712
- dropout,
713
- out_channels=out_ch,
714
- dims=dims,
715
- use_checkpoint=use_checkpoint,
716
- use_scale_shift_norm=use_scale_shift_norm,
717
- up=True,
718
- )
719
- if resblock_updown
720
- else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
721
- )
722
- ds //= 2
723
- self.output_blocks.append(TimestepEmbedSequential(*layers))
724
- self._feature_size += ch
725
-
726
- self.out = nn.Sequential(
727
- normalization(ch),
728
- nn.SiLU(),
729
- zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
730
- )
731
- if self.predict_codebook_ids:
732
- self.id_predictor = nn.Sequential(
733
- normalization(ch),
734
- conv_nd(dims, model_channels, n_embed, 1),
735
- #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
736
- )
737
-
738
- def convert_to_fp16(self):
739
- """
740
- Convert the torso of the model to float16.
741
- """
742
- self.input_blocks.apply(convert_module_to_f16)
743
- self.middle_block.apply(convert_module_to_f16)
744
- self.output_blocks.apply(convert_module_to_f16)
745
-
746
- def convert_to_fp32(self):
747
- """
748
- Convert the torso of the model to float32.
749
- """
750
- self.input_blocks.apply(convert_module_to_f32)
751
- self.middle_block.apply(convert_module_to_f32)
752
- self.output_blocks.apply(convert_module_to_f32)
753
-
754
- def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
755
- """
756
- Apply the model to an input batch.
757
- :param x: an [N x C x ...] Tensor of inputs.
758
- :param timesteps: a 1-D batch of timesteps.
759
- :param context: conditioning plugged in via crossattn
760
- :param y: an [N] Tensor of labels, if class-conditional.
761
- :return: an [N x C x ...] Tensor of outputs.
762
- """
763
- assert (y is not None) == (
764
- self.num_classes is not None
765
- ), "must specify y if and only if the model is class-conditional"
766
- hs = []
767
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
768
- emb = self.time_embed(t_emb)
769
-
770
- if self.num_classes is not None:
771
- assert y.shape[0] == x.shape[0]
772
- emb = emb + self.label_emb(y)
773
-
774
- h = x.type(self.dtype)
775
- for module in self.input_blocks:
776
- h = module(h, emb, context)
777
- hs.append(h)
778
- h = self.middle_block(h, emb, context)
779
- for module in self.output_blocks:
780
- h = th.cat([h, hs.pop()], dim=1)
781
- h = module(h, emb, context)
782
- h = h.type(x.dtype)
783
- if self.predict_codebook_ids:
784
- return self.id_predictor(h)
785
- else:
786
- return self.out(h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/diffusionmodules/upscaling.py DELETED
@@ -1,81 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import numpy as np
4
- from functools import partial
5
-
6
- from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
7
- from ldm.util import default
8
-
9
-
10
- class AbstractLowScaleModel(nn.Module):
11
- # for concatenating a downsampled image to the latent representation
12
- def __init__(self, noise_schedule_config=None):
13
- super(AbstractLowScaleModel, self).__init__()
14
- if noise_schedule_config is not None:
15
- self.register_schedule(**noise_schedule_config)
16
-
17
- def register_schedule(self, beta_schedule="linear", timesteps=1000,
18
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
19
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
20
- cosine_s=cosine_s)
21
- alphas = 1. - betas
22
- alphas_cumprod = np.cumprod(alphas, axis=0)
23
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
24
-
25
- timesteps, = betas.shape
26
- self.num_timesteps = int(timesteps)
27
- self.linear_start = linear_start
28
- self.linear_end = linear_end
29
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
30
-
31
- to_torch = partial(torch.tensor, dtype=torch.float32)
32
-
33
- self.register_buffer('betas', to_torch(betas))
34
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
35
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
36
-
37
- # calculations for diffusion q(x_t | x_{t-1}) and others
38
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
39
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
40
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
41
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
42
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
43
-
44
- def q_sample(self, x_start, t, noise=None):
45
- noise = default(noise, lambda: torch.randn_like(x_start))
46
- return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
47
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
48
-
49
- def forward(self, x):
50
- return x, None
51
-
52
- def decode(self, x):
53
- return x
54
-
55
-
56
- class SimpleImageConcat(AbstractLowScaleModel):
57
- # no noise level conditioning
58
- def __init__(self):
59
- super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
60
- self.max_noise_level = 0
61
-
62
- def forward(self, x):
63
- # fix to constant noise level
64
- return x, torch.zeros(x.shape[0], device=x.device).long()
65
-
66
-
67
- class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
68
- def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
69
- super().__init__(noise_schedule_config=noise_schedule_config)
70
- self.max_noise_level = max_noise_level
71
-
72
- def forward(self, x, noise_level=None):
73
- if noise_level is None:
74
- noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
75
- else:
76
- assert isinstance(noise_level, torch.Tensor)
77
- z = self.q_sample(x, noise_level)
78
- return z, noise_level
79
-
80
-
81
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/diffusionmodules/util.py DELETED
@@ -1,270 +0,0 @@
1
- # adopted from
2
- # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
- # and
4
- # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
- # and
6
- # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
- #
8
- # thanks!
9
-
10
-
11
- import os
12
- import math
13
- import torch
14
- import torch.nn as nn
15
- import numpy as np
16
- from einops import repeat
17
-
18
- from ldm.util import instantiate_from_config
19
-
20
-
21
- def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
- if schedule == "linear":
23
- betas = (
24
- torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
- )
26
-
27
- elif schedule == "cosine":
28
- timesteps = (
29
- torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
- )
31
- alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
- alphas = torch.cos(alphas).pow(2)
33
- alphas = alphas / alphas[0]
34
- betas = 1 - alphas[1:] / alphas[:-1]
35
- betas = np.clip(betas, a_min=0, a_max=0.999)
36
-
37
- elif schedule == "sqrt_linear":
38
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
- elif schedule == "sqrt":
40
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
- else:
42
- raise ValueError(f"schedule '{schedule}' unknown.")
43
- return betas.numpy()
44
-
45
-
46
- def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
- if ddim_discr_method == 'uniform':
48
- c = num_ddpm_timesteps // num_ddim_timesteps
49
- ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
- elif ddim_discr_method == 'quad':
51
- ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
- else:
53
- raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
-
55
- # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
- # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
- steps_out = ddim_timesteps + 1
58
- if verbose:
59
- print(f'Selected timesteps for ddim sampler: {steps_out}')
60
- return steps_out
61
-
62
-
63
- def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
- # select alphas for computing the variance schedule
65
- alphas = alphacums[ddim_timesteps]
66
- alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
-
68
- # according the the formula provided in https://arxiv.org/abs/2010.02502
69
- sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
- if verbose:
71
- print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
- print(f'For the chosen value of eta, which is {eta}, '
73
- f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
- return sigmas, alphas, alphas_prev
75
-
76
-
77
- def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
- """
79
- Create a beta schedule that discretizes the given alpha_t_bar function,
80
- which defines the cumulative product of (1-beta) over time from t = [0,1].
81
- :param num_diffusion_timesteps: the number of betas to produce.
82
- :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
- produces the cumulative product of (1-beta) up to that
84
- part of the diffusion process.
85
- :param max_beta: the maximum beta to use; use values lower than 1 to
86
- prevent singularities.
87
- """
88
- betas = []
89
- for i in range(num_diffusion_timesteps):
90
- t1 = i / num_diffusion_timesteps
91
- t2 = (i + 1) / num_diffusion_timesteps
92
- betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
- return np.array(betas)
94
-
95
-
96
- def extract_into_tensor(a, t, x_shape):
97
- b, *_ = t.shape
98
- out = a.gather(-1, t)
99
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
-
101
-
102
- def checkpoint(func, inputs, params, flag):
103
- """
104
- Evaluate a function without caching intermediate activations, allowing for
105
- reduced memory at the expense of extra compute in the backward pass.
106
- :param func: the function to evaluate.
107
- :param inputs: the argument sequence to pass to `func`.
108
- :param params: a sequence of parameters `func` depends on but does not
109
- explicitly take as arguments.
110
- :param flag: if False, disable gradient checkpointing.
111
- """
112
- if flag:
113
- args = tuple(inputs) + tuple(params)
114
- return CheckpointFunction.apply(func, len(inputs), *args)
115
- else:
116
- return func(*inputs)
117
-
118
-
119
- class CheckpointFunction(torch.autograd.Function):
120
- @staticmethod
121
- def forward(ctx, run_function, length, *args):
122
- ctx.run_function = run_function
123
- ctx.input_tensors = list(args[:length])
124
- ctx.input_params = list(args[length:])
125
- ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
126
- "dtype": torch.get_autocast_gpu_dtype(),
127
- "cache_enabled": torch.is_autocast_cache_enabled()}
128
- with torch.no_grad():
129
- output_tensors = ctx.run_function(*ctx.input_tensors)
130
- return output_tensors
131
-
132
- @staticmethod
133
- def backward(ctx, *output_grads):
134
- ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
135
- with torch.enable_grad(), \
136
- torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
137
- # Fixes a bug where the first op in run_function modifies the
138
- # Tensor storage in place, which is not allowed for detach()'d
139
- # Tensors.
140
- shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
141
- output_tensors = ctx.run_function(*shallow_copies)
142
- input_grads = torch.autograd.grad(
143
- output_tensors,
144
- ctx.input_tensors + ctx.input_params,
145
- output_grads,
146
- allow_unused=True,
147
- )
148
- del ctx.input_tensors
149
- del ctx.input_params
150
- del output_tensors
151
- return (None, None) + input_grads
152
-
153
-
154
- def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
155
- """
156
- Create sinusoidal timestep embeddings.
157
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
158
- These may be fractional.
159
- :param dim: the dimension of the output.
160
- :param max_period: controls the minimum frequency of the embeddings.
161
- :return: an [N x dim] Tensor of positional embeddings.
162
- """
163
- if not repeat_only:
164
- half = dim // 2
165
- freqs = torch.exp(
166
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
167
- ).to(device=timesteps.device)
168
- args = timesteps[:, None].float() * freqs[None]
169
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
170
- if dim % 2:
171
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
172
- else:
173
- embedding = repeat(timesteps, 'b -> b d', d=dim)
174
- return embedding
175
-
176
-
177
- def zero_module(module):
178
- """
179
- Zero out the parameters of a module and return it.
180
- """
181
- for p in module.parameters():
182
- p.detach().zero_()
183
- return module
184
-
185
-
186
- def scale_module(module, scale):
187
- """
188
- Scale the parameters of a module and return it.
189
- """
190
- for p in module.parameters():
191
- p.detach().mul_(scale)
192
- return module
193
-
194
-
195
- def mean_flat(tensor):
196
- """
197
- Take the mean over all non-batch dimensions.
198
- """
199
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
200
-
201
-
202
- def normalization(channels):
203
- """
204
- Make a standard normalization layer.
205
- :param channels: number of input channels.
206
- :return: an nn.Module for normalization.
207
- """
208
- return GroupNorm32(32, channels)
209
-
210
-
211
- # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
212
- class SiLU(nn.Module):
213
- def forward(self, x):
214
- return x * torch.sigmoid(x)
215
-
216
-
217
- class GroupNorm32(nn.GroupNorm):
218
- def forward(self, x):
219
- return super().forward(x.float()).type(x.dtype)
220
-
221
- def conv_nd(dims, *args, **kwargs):
222
- """
223
- Create a 1D, 2D, or 3D convolution module.
224
- """
225
- if dims == 1:
226
- return nn.Conv1d(*args, **kwargs)
227
- elif dims == 2:
228
- return nn.Conv2d(*args, **kwargs)
229
- elif dims == 3:
230
- return nn.Conv3d(*args, **kwargs)
231
- raise ValueError(f"unsupported dimensions: {dims}")
232
-
233
-
234
- def linear(*args, **kwargs):
235
- """
236
- Create a linear module.
237
- """
238
- return nn.Linear(*args, **kwargs)
239
-
240
-
241
- def avg_pool_nd(dims, *args, **kwargs):
242
- """
243
- Create a 1D, 2D, or 3D average pooling module.
244
- """
245
- if dims == 1:
246
- return nn.AvgPool1d(*args, **kwargs)
247
- elif dims == 2:
248
- return nn.AvgPool2d(*args, **kwargs)
249
- elif dims == 3:
250
- return nn.AvgPool3d(*args, **kwargs)
251
- raise ValueError(f"unsupported dimensions: {dims}")
252
-
253
-
254
- class HybridConditioner(nn.Module):
255
-
256
- def __init__(self, c_concat_config, c_crossattn_config):
257
- super().__init__()
258
- self.concat_conditioner = instantiate_from_config(c_concat_config)
259
- self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
260
-
261
- def forward(self, c_concat, c_crossattn):
262
- c_concat = self.concat_conditioner(c_concat)
263
- c_crossattn = self.crossattn_conditioner(c_crossattn)
264
- return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
265
-
266
-
267
- def noise_like(shape, device, repeat=False):
268
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
269
- noise = lambda: torch.randn(shape, device=device)
270
- return repeat_noise() if repeat else noise()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/distributions/distributions.py DELETED
@@ -1,92 +0,0 @@
1
- import torch
2
- import numpy as np
3
-
4
-
5
- class AbstractDistribution:
6
- def sample(self):
7
- raise NotImplementedError()
8
-
9
- def mode(self):
10
- raise NotImplementedError()
11
-
12
-
13
- class DiracDistribution(AbstractDistribution):
14
- def __init__(self, value):
15
- self.value = value
16
-
17
- def sample(self):
18
- return self.value
19
-
20
- def mode(self):
21
- return self.value
22
-
23
-
24
- class DiagonalGaussianDistribution(object):
25
- def __init__(self, parameters, deterministic=False):
26
- self.parameters = parameters
27
- self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
28
- self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
29
- self.deterministic = deterministic
30
- self.std = torch.exp(0.5 * self.logvar)
31
- self.var = torch.exp(self.logvar)
32
- if self.deterministic:
33
- self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
34
-
35
- def sample(self):
36
- x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
37
- return x
38
-
39
- def kl(self, other=None):
40
- if self.deterministic:
41
- return torch.Tensor([0.])
42
- else:
43
- if other is None:
44
- return 0.5 * torch.sum(torch.pow(self.mean, 2)
45
- + self.var - 1.0 - self.logvar,
46
- dim=[1, 2, 3])
47
- else:
48
- return 0.5 * torch.sum(
49
- torch.pow(self.mean - other.mean, 2) / other.var
50
- + self.var / other.var - 1.0 - self.logvar + other.logvar,
51
- dim=[1, 2, 3])
52
-
53
- def nll(self, sample, dims=[1,2,3]):
54
- if self.deterministic:
55
- return torch.Tensor([0.])
56
- logtwopi = np.log(2.0 * np.pi)
57
- return 0.5 * torch.sum(
58
- logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
59
- dim=dims)
60
-
61
- def mode(self):
62
- return self.mean
63
-
64
-
65
- def normal_kl(mean1, logvar1, mean2, logvar2):
66
- """
67
- source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
68
- Compute the KL divergence between two gaussians.
69
- Shapes are automatically broadcasted, so batches can be compared to
70
- scalars, among other use cases.
71
- """
72
- tensor = None
73
- for obj in (mean1, logvar1, mean2, logvar2):
74
- if isinstance(obj, torch.Tensor):
75
- tensor = obj
76
- break
77
- assert tensor is not None, "at least one argument must be a Tensor"
78
-
79
- # Force variances to be Tensors. Broadcasting helps convert scalars to
80
- # Tensors, but it does not work for torch.exp().
81
- logvar1, logvar2 = [
82
- x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
83
- for x in (logvar1, logvar2)
84
- ]
85
-
86
- return 0.5 * (
87
- -1.0
88
- + logvar2
89
- - logvar1
90
- + torch.exp(logvar1 - logvar2)
91
- + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
92
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/ema.py DELETED
@@ -1,80 +0,0 @@
1
- import torch
2
- from torch import nn
3
-
4
-
5
- class LitEma(nn.Module):
6
- def __init__(self, model, decay=0.9999, use_num_upates=True):
7
- super().__init__()
8
- if decay < 0.0 or decay > 1.0:
9
- raise ValueError('Decay must be between 0 and 1')
10
-
11
- self.m_name2s_name = {}
12
- self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
13
- self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
14
- else torch.tensor(-1, dtype=torch.int))
15
-
16
- for name, p in model.named_parameters():
17
- if p.requires_grad:
18
- # remove as '.'-character is not allowed in buffers
19
- s_name = name.replace('.', '')
20
- self.m_name2s_name.update({name: s_name})
21
- self.register_buffer(s_name, p.clone().detach().data)
22
-
23
- self.collected_params = []
24
-
25
- def reset_num_updates(self):
26
- del self.num_updates
27
- self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
28
-
29
- def forward(self, model):
30
- decay = self.decay
31
-
32
- if self.num_updates >= 0:
33
- self.num_updates += 1
34
- decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
35
-
36
- one_minus_decay = 1.0 - decay
37
-
38
- with torch.no_grad():
39
- m_param = dict(model.named_parameters())
40
- shadow_params = dict(self.named_buffers())
41
-
42
- for key in m_param:
43
- if m_param[key].requires_grad:
44
- sname = self.m_name2s_name[key]
45
- shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
46
- shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
47
- else:
48
- assert not key in self.m_name2s_name
49
-
50
- def copy_to(self, model):
51
- m_param = dict(model.named_parameters())
52
- shadow_params = dict(self.named_buffers())
53
- for key in m_param:
54
- if m_param[key].requires_grad:
55
- m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
56
- else:
57
- assert not key in self.m_name2s_name
58
-
59
- def store(self, parameters):
60
- """
61
- Save the current parameters for restoring later.
62
- Args:
63
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
64
- temporarily stored.
65
- """
66
- self.collected_params = [param.clone() for param in parameters]
67
-
68
- def restore(self, parameters):
69
- """
70
- Restore the parameters stored with the `store` method.
71
- Useful to validate the model with EMA parameters without affecting the
72
- original optimization process. Store the parameters before the
73
- `copy_to` method. After validation (or model saving), use this to
74
- restore the former parameters.
75
- Args:
76
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
77
- updated with the stored parameters.
78
- """
79
- for c_param, param in zip(self.collected_params, parameters):
80
- param.data.copy_(c_param.data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/modules/encoders/modules.py DELETED
@@ -1,214 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from torch.utils.checkpoint import checkpoint
4
-
5
- from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
6
-
7
- import open_clip
8
- from ldm.util import default, count_params
9
-
10
-
11
- class AbstractEncoder(nn.Module):
12
- def __init__(self):
13
- super().__init__()
14
-
15
- def encode(self, *args, **kwargs):
16
- raise NotImplementedError
17
-
18
-
19
- class IdentityEncoder(AbstractEncoder):
20
-
21
- def encode(self, x):
22
- return x
23
-
24
-
25
- class ClassEmbedder(nn.Module):
26
- def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
27
- super().__init__()
28
- self.key = key
29
- self.embedding = nn.Embedding(n_classes, embed_dim)
30
- self.n_classes = n_classes
31
- self.ucg_rate = ucg_rate
32
-
33
- def forward(self, batch, key=None, disable_dropout=False):
34
- if key is None:
35
- key = self.key
36
- # this is for use in crossattn
37
- c = batch[key][:, None]
38
- if self.ucg_rate > 0. and not disable_dropout:
39
- mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
40
- c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
41
- c = c.long()
42
- c = self.embedding(c)
43
- return c
44
-
45
- def get_unconditional_conditioning(self, bs, device="cuda"):
46
- uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
47
- uc = torch.ones((bs,), device=device) * uc_class
48
- uc = {self.key: uc}
49
- return uc
50
-
51
-
52
- def disabled_train(self, mode=True):
53
- """Overwrite model.train with this function to make sure train/eval mode
54
- does not change anymore."""
55
- return self
56
-
57
-
58
- class FrozenT5Embedder(AbstractEncoder):
59
- """Uses the T5 transformer encoder for text"""
60
- def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
61
- super().__init__()
62
- self.tokenizer = T5Tokenizer.from_pretrained(version)
63
- self.transformer = T5EncoderModel.from_pretrained(version)
64
- self.device = device
65
- self.max_length = max_length # TODO: typical value?
66
- if freeze:
67
- self.freeze()
68
-
69
- def freeze(self):
70
- self.transformer = self.transformer.eval()
71
- #self.train = disabled_train
72
- for param in self.parameters():
73
- param.requires_grad = False
74
-
75
- def forward(self, text):
76
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
77
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
78
- tokens = batch_encoding["input_ids"].to(self.device)
79
- outputs = self.transformer(input_ids=tokens)
80
-
81
- z = outputs.last_hidden_state
82
- return z
83
-
84
- def encode(self, text):
85
- return self(text)
86
-
87
-
88
- class FrozenCLIPEmbedder(AbstractEncoder):
89
- """Uses the CLIP transformer encoder for text (from huggingface)"""
90
- LAYERS = [
91
- "last",
92
- "pooled",
93
- "hidden"
94
- ]
95
- def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
96
- freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
97
- super().__init__()
98
- assert layer in self.LAYERS
99
- self.tokenizer = CLIPTokenizer.from_pretrained(version)
100
- self.transformer = CLIPTextModel.from_pretrained(version)
101
- self.device = device
102
- self.max_length = max_length
103
- if freeze:
104
- self.freeze()
105
- self.layer = layer
106
- self.layer_idx = layer_idx
107
- if layer == "hidden":
108
- assert layer_idx is not None
109
- assert 0 <= abs(layer_idx) <= 12
110
-
111
- def freeze(self):
112
- self.transformer = self.transformer.eval()
113
- #self.train = disabled_train
114
- for param in self.parameters():
115
- param.requires_grad = False
116
-
117
- def forward(self, text):
118
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
119
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
120
- tokens = batch_encoding["input_ids"].to(self.device)
121
- print('Using device', self.device)
122
- outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
123
- if self.layer == "last":
124
- z = outputs.last_hidden_state
125
- elif self.layer == "pooled":
126
- z = outputs.pooler_output[:, None, :]
127
- else:
128
- z = outputs.hidden_states[self.layer_idx]
129
- return z
130
-
131
- def encode(self, text):
132
- return self(text)
133
-
134
-
135
- class FrozenOpenCLIPEmbedder(AbstractEncoder):
136
- """
137
- Uses the OpenCLIP transformer encoder for text
138
- """
139
- LAYERS = [
140
- #"pooled",
141
- "last",
142
- "penultimate"
143
- ]
144
- def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
145
- freeze=True, layer="last"):
146
- super().__init__()
147
- assert layer in self.LAYERS
148
- model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cuda'), pretrained=version)
149
- del model.visual
150
- self.model = model
151
-
152
- self.device = device
153
- self.max_length = max_length
154
- if freeze:
155
- self.freeze()
156
- self.layer = layer
157
- if self.layer == "last":
158
- self.layer_idx = 0
159
- elif self.layer == "penultimate":
160
- self.layer_idx = 1
161
- else:
162
- raise NotImplementedError()
163
-
164
- def freeze(self):
165
- self.model = self.model.eval()
166
- for param in self.parameters():
167
- param.requires_grad = False
168
-
169
- def forward(self, text):
170
- tokens = open_clip.tokenize(text)
171
- z = self.encode_with_transformer(tokens.to(self.device))
172
- return z
173
-
174
- def encode_with_transformer(self, text):
175
- x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
176
- x = x + self.model.positional_embedding
177
- x = x.permute(1, 0, 2) # NLD -> LND
178
- x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
179
- x = x.permute(1, 0, 2) # LND -> NLD
180
- x = self.model.ln_final(x)
181
- return x
182
-
183
- def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
184
- for i, r in enumerate(self.model.transformer.resblocks):
185
- if i == len(self.model.transformer.resblocks) - self.layer_idx:
186
- break
187
- if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
188
- x = checkpoint(r, x, attn_mask)
189
- else:
190
- x = r(x, attn_mask=attn_mask)
191
- return x
192
-
193
- def encode(self, text):
194
- return self(text)
195
-
196
-
197
- class FrozenCLIPT5Encoder(AbstractEncoder):
198
- def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
199
- clip_max_length=77, t5_max_length=77):
200
- super().__init__()
201
- self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
202
- self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
203
- print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
204
- f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
205
-
206
- def encode(self, text):
207
- return self(text)
208
-
209
- def forward(self, text):
210
- clip_z = self.clip_encoder.encode(text)
211
- t5_z = self.t5_encoder.encode(text)
212
- return [clip_z, t5_z]
213
-
214
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ldm/util.py DELETED
@@ -1,197 +0,0 @@
1
- import importlib
2
-
3
- import torch
4
- from torch import optim
5
- import numpy as np
6
-
7
- from inspect import isfunction
8
- from PIL import Image, ImageDraw, ImageFont
9
-
10
-
11
- def log_txt_as_img(wh, xc, size=10):
12
- # wh a tuple of (width, height)
13
- # xc a list of captions to plot
14
- b = len(xc)
15
- txts = list()
16
- for bi in range(b):
17
- txt = Image.new("RGB", wh, color="white")
18
- draw = ImageDraw.Draw(txt)
19
- font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
20
- nc = int(40 * (wh[0] / 256))
21
- lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
22
-
23
- try:
24
- draw.text((0, 0), lines, fill="black", font=font)
25
- except UnicodeEncodeError:
26
- print("Cant encode string for logging. Skipping.")
27
-
28
- txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
29
- txts.append(txt)
30
- txts = np.stack(txts)
31
- txts = torch.tensor(txts)
32
- return txts
33
-
34
-
35
- def ismap(x):
36
- if not isinstance(x, torch.Tensor):
37
- return False
38
- return (len(x.shape) == 4) and (x.shape[1] > 3)
39
-
40
-
41
- def isimage(x):
42
- if not isinstance(x,torch.Tensor):
43
- return False
44
- return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
45
-
46
-
47
- def exists(x):
48
- return x is not None
49
-
50
-
51
- def default(val, d):
52
- if exists(val):
53
- return val
54
- return d() if isfunction(d) else d
55
-
56
-
57
- def mean_flat(tensor):
58
- """
59
- https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
60
- Take the mean over all non-batch dimensions.
61
- """
62
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
63
-
64
-
65
- def count_params(model, verbose=False):
66
- total_params = sum(p.numel() for p in model.parameters())
67
- if verbose:
68
- print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
69
- return total_params
70
-
71
-
72
- def instantiate_from_config(config):
73
- if not "target" in config:
74
- if config == '__is_first_stage__':
75
- return None
76
- elif config == "__is_unconditional__":
77
- return None
78
- raise KeyError("Expected key `target` to instantiate.")
79
- return get_obj_from_str(config["target"])(**config.get("params", dict()))
80
-
81
-
82
- def get_obj_from_str(string, reload=False):
83
- module, cls = string.rsplit(".", 1)
84
- if reload:
85
- module_imp = importlib.import_module(module)
86
- importlib.reload(module_imp)
87
- return getattr(importlib.import_module(module, package=None), cls)
88
-
89
-
90
- class AdamWwithEMAandWings(optim.Optimizer):
91
- # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
92
- def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
93
- weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
94
- ema_power=1., param_names=()):
95
- """AdamW that saves EMA versions of the parameters."""
96
- if not 0.0 <= lr:
97
- raise ValueError("Invalid learning rate: {}".format(lr))
98
- if not 0.0 <= eps:
99
- raise ValueError("Invalid epsilon value: {}".format(eps))
100
- if not 0.0 <= betas[0] < 1.0:
101
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
102
- if not 0.0 <= betas[1] < 1.0:
103
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
104
- if not 0.0 <= weight_decay:
105
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
106
- if not 0.0 <= ema_decay <= 1.0:
107
- raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
108
- defaults = dict(lr=lr, betas=betas, eps=eps,
109
- weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
110
- ema_power=ema_power, param_names=param_names)
111
- super().__init__(params, defaults)
112
-
113
- def __setstate__(self, state):
114
- super().__setstate__(state)
115
- for group in self.param_groups:
116
- group.setdefault('amsgrad', False)
117
-
118
- @torch.no_grad()
119
- def step(self, closure=None):
120
- """Performs a single optimization step.
121
- Args:
122
- closure (callable, optional): A closure that reevaluates the model
123
- and returns the loss.
124
- """
125
- loss = None
126
- if closure is not None:
127
- with torch.enable_grad():
128
- loss = closure()
129
-
130
- for group in self.param_groups:
131
- params_with_grad = []
132
- grads = []
133
- exp_avgs = []
134
- exp_avg_sqs = []
135
- ema_params_with_grad = []
136
- state_sums = []
137
- max_exp_avg_sqs = []
138
- state_steps = []
139
- amsgrad = group['amsgrad']
140
- beta1, beta2 = group['betas']
141
- ema_decay = group['ema_decay']
142
- ema_power = group['ema_power']
143
-
144
- for p in group['params']:
145
- if p.grad is None:
146
- continue
147
- params_with_grad.append(p)
148
- if p.grad.is_sparse:
149
- raise RuntimeError('AdamW does not support sparse gradients')
150
- grads.append(p.grad)
151
-
152
- state = self.state[p]
153
-
154
- # State initialization
155
- if len(state) == 0:
156
- state['step'] = 0
157
- # Exponential moving average of gradient values
158
- state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
159
- # Exponential moving average of squared gradient values
160
- state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
161
- if amsgrad:
162
- # Maintains max of all exp. moving avg. of sq. grad. values
163
- state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
164
- # Exponential moving average of parameter values
165
- state['param_exp_avg'] = p.detach().float().clone()
166
-
167
- exp_avgs.append(state['exp_avg'])
168
- exp_avg_sqs.append(state['exp_avg_sq'])
169
- ema_params_with_grad.append(state['param_exp_avg'])
170
-
171
- if amsgrad:
172
- max_exp_avg_sqs.append(state['max_exp_avg_sq'])
173
-
174
- # update the steps for each param group update
175
- state['step'] += 1
176
- # record the step after step update
177
- state_steps.append(state['step'])
178
-
179
- optim._functional.adamw(params_with_grad,
180
- grads,
181
- exp_avgs,
182
- exp_avg_sqs,
183
- max_exp_avg_sqs,
184
- state_steps,
185
- amsgrad=amsgrad,
186
- beta1=beta1,
187
- beta2=beta2,
188
- lr=group['lr'],
189
- weight_decay=group['weight_decay'],
190
- eps=group['eps'],
191
- maximize=False)
192
-
193
- cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
194
- for param, ema_param in zip(params_with_grad, ema_params_with_grad):
195
- ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
196
-
197
- return loss