ControlNet / app.py
RamAnanth1's picture
Update app.py
daf30b7
raw
history blame
5.18 kB
import cv2
import einops
import gradio as gr
import numpy as np
import torch
from pytorch_lightning import seed_everything
from util import resize_image, HWC3, apply_canny
from ldm.models.diffusion.ddim import DDIMSampler
from annotator.openpose import apply_openpose
from cldm.model import create_model, load_state_dict
from huggingface_hub import hf_hub_url, cached_download
REPO_ID = "lllyasviel/ControlNet"
canny_checkpoint = "models/control_sd15_canny.pth"
pose_checkpoint = "models/control_sd15_openpose.pth"
canny_model = create_model('./models/cldm_v15.yaml')
canny_model.load_state_dict(load_state_dict(cached_download(
hf_hub_url(REPO_ID, canny_checkpoint)
), location='cuda'))
ddim_sampler = DDIMSampler(canny_model)
# pose_model = create_model('./models/cldm_v15.yaml')
# pose_model.load_state_dict(load_state_dict(cached_download(
# hf_hub_url(REPO_ID, pose_checkpoint)
# ), location='cpu'))
# ddim_sampler_pose = DDIMSampler(pose_model)
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
# TODO: Add other control tasks
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
with torch.no_grad():
img = resize_image(HWC3(input_image), image_resolution)
H, W, C = img.shape
detected_map = apply_canny(img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
seed_everything(seed)
cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
x_samples = canny_model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [255 - detected_map] + results
block = gr.Blocks().queue()
control_task_list = [
"Canny Edge Map"
]
with block:
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
input_control = gr.Dropdown(control_task_list, value="Canny Edge Map", label="Control Task")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
examples = gr.Examples(examples=[["bird.png", "bird","Canny Edge Map"]],inputs = [input_image, prompt, input_control], outputs = [result_gallery])
block.launch(debug = True)