Spaces:
Runtime error
Runtime error
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
from pytorch_lightning import seed_everything | |
from util import resize_image, HWC3, apply_canny | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from cldm.model import create_model, load_state_dict | |
from huggingface_hub import hf_hub_url, cached_download | |
REPO_ID = "lllyasviel/ControlNet" | |
canny_checkpoint = "models/control_sd15_canny.pth" | |
scribble_checkpoint = "models/control_sd15_scribble.pth" | |
canny_model = create_model('./models/cldm_v15.yaml') | |
canny_model.load_state_dict(load_state_dict(cached_download( | |
hf_hub_url(REPO_ID, canny_checkpoint) | |
), location='cpu')) | |
canny_model = canny_model.cuda() | |
ddim_sampler = DDIMSampler(canny_model) | |
scribble_model = create_model('./models/cldm_v15.yaml') | |
scribble_model.load_state_dict(load_state_dict(cached_download( | |
hf_hub_url(REPO_ID, scribble_checkpoint) | |
), location='cpu')) | |
scribble_model = canny_model.cuda() | |
ddim_sampler_scribble = DDIMSampler(scribble_model) | |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold): | |
# TODO: Add other control tasks | |
if input_control == "Scribble": | |
return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta) | |
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold) | |
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold): | |
with torch.no_grad(): | |
img = resize_image(HWC3(input_image), image_resolution) | |
H, W, C = img.shape | |
detected_map = apply_canny(img, low_threshold, high_threshold) | |
detected_map = HWC3(detected_map) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
seed_everything(seed) | |
cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} | |
un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
x_samples = canny_model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [255 - detected_map] + results | |
def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta): | |
with torch.no_grad(): | |
img = resize_image(HWC3(input_image), image_resolution) | |
H, W, C = img.shape | |
detected_map = np.zeros_like(img, dtype=np.uint8) | |
detected_map[np.min(img, axis=2) < 127] = 255 | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
seed_everything(seed) | |
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} | |
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
x_samples = scribble_model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [255 - detected_map] + results | |
def create_canvas(w, h): | |
new_control_options = ["Interactive Scribble"] | |
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255 | |
block = gr.Blocks().queue() | |
control_task_list = [ | |
"Canny Edge Map", | |
"Scribble" | |
] | |
with block: | |
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is an unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation. | |
</p> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256) | |
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1) | |
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", | |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
examples_list = [ | |
[ | |
"bird.png", | |
"bird", | |
"Canny Edge Map", | |
"best quality, extremely detailed", | |
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality', | |
1, | |
512, | |
20, | |
9.0, | |
123490213, | |
0.0, | |
100, | |
200 | |
], | |
[ | |
"turtle.png", | |
"turtle", | |
"Scribble", | |
"best quality, extremely detailed", | |
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality', | |
1, | |
512, | |
20, | |
9.0, | |
123490213, | |
0.0, | |
100, | |
200 | |
] | |
] | |
examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold], outputs = [result_gallery], cache_examples = True, fn = process) | |
examples.dataset.headers = [""] | |
block.launch(debug = True) |