File size: 28,009 Bytes
de015f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
import torch
import os
import sys
import torch.nn as nn
import torch.nn.functional as F

from collections import OrderedDict
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
import math
import random
import PIL
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
from accelerate import Accelerator
from diffusion_schedulers import PyramidFlowMatchEulerDiscreteScheduler
from video_vae.modeling_causal_vae import CausalVideoVAE

from trainer_misc import (
    all_to_all,
    is_sequence_parallel_initialized,
    get_sequence_parallel_group,
    get_sequence_parallel_group_rank,
    get_sequence_parallel_rank,
    get_sequence_parallel_world_size,
    get_rank,
)

from .modeling_pyramid_mmdit import PyramidDiffusionMMDiT
from .modeling_text_encoder import SD3TextEncoderWithMask


def compute_density_for_timestep_sampling(
    weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
    if weighting_scheme == "logit_normal":
        # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
        u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
        u = torch.nn.functional.sigmoid(u)
    elif weighting_scheme == "mode":
        u = torch.rand(size=(batch_size,), device="cpu")
        u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
    else:
        u = torch.rand(size=(batch_size,), device="cpu")
    return u


class PyramidDiTForVideoGeneration:
    """
        The pyramid dit for both image and video generation, The running class wrapper
        This class is mainly for fixed unit implementation: 1 + n + n + n
    """
    def __init__(self, model_path, model_dtype='bf16', use_gradient_checkpointing=False, return_log=True,
        model_variant="diffusion_transformer_768p", timestep_shift=1.0, stage_range=[0, 1/3, 2/3, 1],
        sample_ratios=[1, 1, 1], scheduler_gamma=1/3, use_mixed_training=False, use_flash_attn=False, 
        load_text_encoder=True, load_vae=True, max_temporal_length=31, frame_per_unit=1, use_temporal_causal=True, 
        corrupt_ratio=1/3, interp_condition_pos=True, stages=[1, 2, 4], **kwargs,
    ):
        super().__init__()

        if model_dtype == 'bf16':
            torch_dtype = torch.bfloat16
        elif model_dtype == 'fp16':
            torch_dtype = torch.float16
        else:
            torch_dtype = torch.float32

        self.stages = stages
        self.sample_ratios = sample_ratios
        self.corrupt_ratio = corrupt_ratio

        dit_path = os.path.join(model_path, model_variant)

        # The dit
        if use_mixed_training:
            print("using mixed precision training, do not explicitly casting models")
            self.dit = PyramidDiffusionMMDiT.from_pretrained(
                dit_path, use_gradient_checkpointing=use_gradient_checkpointing, 
                use_flash_attn=use_flash_attn, use_t5_mask=True, 
                add_temp_pos_embed=True, temp_pos_embed_type='rope', 
                use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
            )
        else:
            print("using half precision")
            self.dit = PyramidDiffusionMMDiT.from_pretrained(
                dit_path, torch_dtype=torch_dtype, 
                use_gradient_checkpointing=use_gradient_checkpointing, 
                use_flash_attn=use_flash_attn, use_t5_mask=True,
                add_temp_pos_embed=True, temp_pos_embed_type='rope', 
                use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
            )

        # The text encoder
        if load_text_encoder:
            self.text_encoder = SD3TextEncoderWithMask(model_path, torch_dtype=torch_dtype)
        else:
            self.text_encoder = None

        # The base video vae decoder
        if load_vae:
            self.vae = CausalVideoVAE.from_pretrained(os.path.join(model_path, 'causal_video_vae'), torch_dtype=torch_dtype, interpolate=False)
            # Freeze vae
            for parameter in self.vae.parameters():
                parameter.requires_grad = False
        else:
            self.vae = None
        
        # For the image latent
        self.vae_shift_factor = 0.1490
        self.vae_scale_factor = 1 / 1.8415

        # For the video latent
        self.vae_video_shift_factor = -0.2343
        self.vae_video_scale_factor = 1 / 3.0986

        self.downsample = 8

        # Configure the video training hyper-parameters
        # The video sequence: one frame + N * unit
        self.frame_per_unit = frame_per_unit
        self.max_temporal_length = max_temporal_length
        assert (max_temporal_length - 1) % frame_per_unit == 0, "The frame number should be divided by the frame number per unit"
        self.num_units_per_video = 1 + ((max_temporal_length - 1) // frame_per_unit) + int(sum(sample_ratios))

        self.scheduler = PyramidFlowMatchEulerDiscreteScheduler(
            shift=timestep_shift, stages=len(self.stages), 
            stage_range=stage_range, gamma=scheduler_gamma,
        )
        print(f"The start sigmas and end sigmas of each stage is Start: {self.scheduler.start_sigmas}, End: {self.scheduler.end_sigmas}, Ori_start: {self.scheduler.ori_start_sigmas}")
        
        self.cfg_rate = 0.1
        self.return_log = return_log
        self.use_flash_attn = use_flash_attn

    def load_checkpoint(self, checkpoint_path, model_key='model', **kwargs):
        checkpoint = torch.load(checkpoint_path, map_location='cpu')
        dit_checkpoint = OrderedDict()
        for key in checkpoint:
            if key.startswith('vae') or key.startswith('text_encoder'):
                continue
            if key.startswith('dit'):
                new_key = key.split('.')
                new_key = '.'.join(new_key[1:])
                dit_checkpoint[new_key] = checkpoint[key]
            else:
                dit_checkpoint[key] = checkpoint[key]

        load_result = self.dit.load_state_dict(dit_checkpoint, strict=True)
        print(f"Load checkpoint from {checkpoint_path}, load result: {load_result}")

    def load_vae_checkpoint(self, vae_checkpoint_path, model_key='model'):
        checkpoint = torch.load(vae_checkpoint_path, map_location='cpu')
        checkpoint = checkpoint[model_key]
        loaded_checkpoint = OrderedDict()
        
        for key in checkpoint.keys():
            if key.startswith('vae.'):
                new_key = key.split('.')
                new_key = '.'.join(new_key[1:])
                loaded_checkpoint[new_key] = checkpoint[key]

        load_result = self.vae.load_state_dict(loaded_checkpoint)
        print(f"Load the VAE from {vae_checkpoint_path}, load result: {load_result}")
    
    @torch.no_grad()
    def get_pyramid_latent(self, x, stage_num):
        # x is the origin vae latent
        vae_latent_list = []
        vae_latent_list.append(x)

        temp, height, width = x.shape[-3], x.shape[-2], x.shape[-1]
        for _ in range(stage_num):
            height //= 2
            width //= 2
            x = rearrange(x, 'b c t h w -> (b t) c h w')
            x = torch.nn.functional.interpolate(x, size=(height, width), mode='bilinear')
            x = rearrange(x, '(b t) c h w -> b c t h w', t=temp)
            vae_latent_list.append(x)

        vae_latent_list = list(reversed(vae_latent_list))
        return vae_latent_list

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        temp,
        height,
        width,
        dtype,
        device,
        generator,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            int(temp),
            int(height) // self.downsample,
            int(width) // self.downsample,
        )
        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        return latents

    def sample_block_noise(self, bs, ch, temp, height, width):
        gamma = self.scheduler.config.gamma
        dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(4), torch.eye(4) * (1 + gamma) - torch.ones(4, 4) * gamma)
        block_number = bs * ch * temp * (height // 2) * (width // 2)
        noise = torch.stack([dist.sample() for _ in range(block_number)]) # [block number, 4]
        noise = rearrange(noise, '(b c t h w) (p q) -> b c t (h p) (w q)',b=bs,c=ch,t=temp,h=height//2,w=width//2,p=2,q=2)
        return noise

    @torch.no_grad()
    def generate_one_unit(
        self,
        latents,
        past_conditions, # List of past conditions, contains the conditions of each stage
        prompt_embeds,
        prompt_attention_mask,
        pooled_prompt_embeds,
        num_inference_steps,
        height,
        width,
        temp,
        device,
        dtype,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        is_first_frame: bool = False,
    ):
        stages = self.stages
        intermed_latents = []

        for i_s in range(len(stages)):
            self.scheduler.set_timesteps(num_inference_steps[i_s], i_s, device=device)
            timesteps = self.scheduler.timesteps

            if i_s > 0:
                height *= 2; width *= 2
                latents = rearrange(latents, 'b c t h w -> (b t) c h w')
                latents = F.interpolate(latents, size=(height, width), mode='nearest')
                latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
                # Fix the stage
                ori_sigma = 1 - self.scheduler.ori_start_sigmas[i_s]   # the original coeff of signal
                gamma = self.scheduler.config.gamma
                alpha = 1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)
                beta = alpha * (1 - ori_sigma) / math.sqrt(gamma)

                bs, ch, temp, height, width = latents.shape
                noise = self.sample_block_noise(bs, ch, temp, height, width)
                noise = noise.to(device=device, dtype=dtype)
                latents = alpha * latents + beta * noise    # To fix the block artifact

            for idx, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
                
                latent_model_input = past_conditions[i_s] + [latent_model_input]

                noise_pred = self.dit(
                    sample=[latent_model_input],
                    timestep_ratio=timestep,
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=prompt_attention_mask,
                    pooled_projections=pooled_prompt_embeds,
                )

                noise_pred = noise_pred[0]
                
                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    if is_first_frame:
                        noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
                    else:
                        noise_pred = noise_pred_uncond + self.video_guidance_scale * (noise_pred_text - noise_pred_uncond)
                
                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    model_output=noise_pred,
                    timestep=timestep,
                    sample=latents,
                    generator=generator,
                ).prev_sample

            intermed_latents.append(latents)

        return intermed_latents

    @torch.no_grad()
    def generate_i2v(
        self,
        prompt: Union[str, List[str]] = '',
        input_image: PIL.Image = None,
        temp: int = 1,
        num_inference_steps: Optional[Union[int, List[int]]] = 28,
        guidance_scale: float = 7.0,
        video_guidance_scale: float = 4.0,
        min_guidance_scale: float = 2.0,
        use_linear_guidance: bool = False,
        alpha: float = 0.5,
        negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        output_type: Optional[str] = "pil",
    ):
        device = self.device
        dtype = self.dtype

        width = input_image.width
        height = input_image.height

        assert temp % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"

        if isinstance(prompt, str):
            batch_size = 1
            prompt = prompt + ", hyper quality, Ultra HD, 8K"   # adding this prompt to improve aesthetics
        else:
            assert isinstance(prompt, list)
            batch_size = len(prompt)
            prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]

        if isinstance(num_inference_steps, int):
            num_inference_steps = [num_inference_steps] * len(self.stages)
        
        negative_prompt = negative_prompt or ""

        # Get the text embeddings
        prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
        negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)

        if use_linear_guidance:
            max_guidance_scale = guidance_scale
            guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp+1)]
            print(guidance_scale_list)

        self._guidance_scale = guidance_scale
        self._video_guidance_scale = video_guidance_scale

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
            prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)

        # Create the initial random noise
        num_channels_latents = self.dit.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            temp,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
        )

        temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]

        latents = rearrange(latents, 'b c t h w -> (b t) c h w')
        # by defalut, we needs to start from the block noise
        for _ in range(len(self.stages)-1):
            height //= 2;width //= 2
            latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
        
        latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)

        num_units = temp // self.frame_per_unit
        stages = self.stages

        # encode the image latents
        image_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
        ])
        input_image_tensor = image_transform(input_image).unsqueeze(0).unsqueeze(2)   # [b c 1 h w]
        input_image_latent = (self.vae.encode(input_image_tensor.to(device)).latent_dist.sample() - self.vae_shift_factor) * self.vae_scale_factor  # [b c 1 h w]

        generated_latents_list = [input_image_latent]    # The generated results
        last_generated_latents = input_image_latent

        for unit_index in tqdm(range(1, num_units + 1)):
            if use_linear_guidance:
                self._guidance_scale = guidance_scale_list[unit_index]
                self._video_guidance_scale = guidance_scale_list[unit_index]

            # prepare the condition latents
            past_condition_latents = []
            clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
            
            for i_s in range(len(stages)):
                last_cond_latent = clean_latents_list[i_s][:,:,-self.frame_per_unit:]

                stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
        
                # pad the past clean latents
                cur_unit_num = unit_index
                cur_stage = i_s
                cur_unit_ptx = 1

                while cur_unit_ptx < cur_unit_num:
                    cur_stage = max(cur_stage - 1, 0)
                    if cur_stage == 0:
                        break
                    cur_unit_ptx += 1
                    cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
                    stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)

                if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
                    cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
                    stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
            
                stage_input = list(reversed(stage_input))
                past_condition_latents.append(stage_input)

            intermed_latents = self.generate_one_unit(
                latents[:,:,(unit_index - 1) * self.frame_per_unit:unit_index * self.frame_per_unit],
                past_condition_latents,
                prompt_embeds,
                prompt_attention_mask,
                pooled_prompt_embeds,
                num_inference_steps,
                height,
                width,
                self.frame_per_unit,
                device,
                dtype,
                generator,
                is_first_frame=False,
            )
    
            generated_latents_list.append(intermed_latents[-1])
            last_generated_latents = intermed_latents

        generated_latents = torch.cat(generated_latents_list, dim=2)

        if output_type == "latent":
            image = generated_latents
        else:
            image = self.decode_latent(generated_latents)

        return image

    @torch.no_grad()
    def generate(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        temp: int = 1,
        num_inference_steps: Optional[Union[int, List[int]]] = 28,
        video_num_inference_steps: Optional[Union[int, List[int]]] = 28,
        guidance_scale: float = 7.0,
        video_guidance_scale: float = 7.0,
        min_guidance_scale: float = 2.0,
        use_linear_guidance: bool = False,
        alpha: float = 0.5,
        negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        output_type: Optional[str] = "pil",
    ):
        device = self.device
        dtype = self.dtype

        assert (temp - 1) % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"

        if isinstance(prompt, str):
            batch_size = 1
            prompt = prompt + ", hyper quality, Ultra HD, 8K"        # adding this prompt to improve aesthetics
        else:
            assert isinstance(prompt, list)
            batch_size = len(prompt)
            prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]

        if isinstance(num_inference_steps, int):
            num_inference_steps = [num_inference_steps] * len(self.stages)

        if isinstance(video_num_inference_steps, int):
            video_num_inference_steps = [video_num_inference_steps] * len(self.stages)

        negative_prompt = negative_prompt or ""

        # Get the text embeddings
        prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
        negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)

        if use_linear_guidance:
            max_guidance_scale = guidance_scale
            # guidance_scale_list = torch.linspace(max_guidance_scale, min_guidance_scale, temp).tolist()
            guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp)]
            print(guidance_scale_list)

        self._guidance_scale = guidance_scale
        self._video_guidance_scale = video_guidance_scale

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
            prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)

        # Create the initial random noise
        num_channels_latents = self.dit.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            temp,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
        )

        temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]

        latents = rearrange(latents, 'b c t h w -> (b t) c h w')
        # by defalut, we needs to start from the block noise
        for _ in range(len(self.stages)-1):
            height //= 2;width //= 2
            latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
        
        latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)

        num_units = 1 + (temp - 1) // self.frame_per_unit
        stages = self.stages

        generated_latents_list = []    # The generated results
        last_generated_latents = None

        for unit_index in tqdm(range(num_units)):
            if use_linear_guidance:
                self._guidance_scale = guidance_scale_list[unit_index]
                self._video_guidance_scale = guidance_scale_list[unit_index]

            if unit_index == 0:
                past_condition_latents = [[] for _ in range(len(stages))]
                intermed_latents = self.generate_one_unit(
                    latents[:,:,:1],
                    past_condition_latents,
                    prompt_embeds,
                    prompt_attention_mask,
                    pooled_prompt_embeds,
                    num_inference_steps,
                    height,
                    width,
                    1,
                    device,
                    dtype,
                    generator,
                    is_first_frame=True,
                )
            else:
                # prepare the condition latents
                past_condition_latents = []
                clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
                
                for i_s in range(len(stages)):
                    last_cond_latent = clean_latents_list[i_s][:,:,-(self.frame_per_unit):]

                    stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
            
                    # pad the past clean latents
                    cur_unit_num = unit_index
                    cur_stage = i_s
                    cur_unit_ptx = 1

                    while cur_unit_ptx < cur_unit_num:
                        cur_stage = max(cur_stage - 1, 0)
                        if cur_stage == 0:
                            break
                        cur_unit_ptx += 1
                        cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
                        stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)

                    if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
                        cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
                        stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
                
                    stage_input = list(reversed(stage_input))
                    past_condition_latents.append(stage_input)

                intermed_latents = self.generate_one_unit(
                    latents[:,:, 1 + (unit_index - 1) * self.frame_per_unit:1 + unit_index * self.frame_per_unit],
                    past_condition_latents,
                    prompt_embeds,
                    prompt_attention_mask,
                    pooled_prompt_embeds,
                    video_num_inference_steps,
                    height,
                    width,
                    self.frame_per_unit,
                    device,
                    dtype,
                    generator,
                    is_first_frame=False,
                )

            generated_latents_list.append(intermed_latents[-1])
            last_generated_latents = intermed_latents

        generated_latents = torch.cat(generated_latents_list, dim=2)

        if output_type == "latent":
            image = generated_latents
        else:
            image = self.decode_latent(generated_latents)

        return image

    def decode_latent(self, latents):
        if latents.shape[2] == 1:
            latents = (latents / self.vae_scale_factor) + self.vae_shift_factor
        else:
            latents[:, :, :1] = (latents[:, :, :1] / self.vae_scale_factor) + self.vae_shift_factor
            latents[:, :, 1:] = (latents[:, :, 1:] / self.vae_video_scale_factor) + self.vae_video_shift_factor

        image = self.vae.decode(latents, temporal_chunk=True, window_size=2, tile_sample_min_size=512).sample
        image = image.float()
        image = (image / 2 + 0.5).clamp(0, 1)
        image = rearrange(image, "B C T H W -> (B T) C H W")
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        image = self.numpy_to_pil(image)
        return image

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @property
    def device(self):
        return next(self.dit.parameters()).device

    @property
    def dtype(self):
        return next(self.dit.parameters()).dtype

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def video_guidance_scale(self):
        return self._video_guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 0