import modules.core as core import os import torch import modules.path from comfy.model_base import SDXL, SDXLRefiner xl_base: core.StableDiffusionModel = None xl_base_hash = '' xl_refiner: core.StableDiffusionModel = None xl_refiner_hash = '' xl_base_patched: core.StableDiffusionModel = None xl_base_patched_hash = '' def refresh_base_model(name): global xl_base, xl_base_hash, xl_base_patched, xl_base_patched_hash if xl_base_hash == str(name): return filename = os.path.join(modules.path.modelfile_path, name) if xl_base is not None: xl_base.to_meta() xl_base = None xl_base = core.load_model(filename) if not isinstance(xl_base.unet.model, SDXL): print('Model not supported. Fooocus only support SDXL model as the base model.') xl_base = None xl_base_hash = '' refresh_base_model(modules.path.default_base_model_name) xl_base_hash = name xl_base_patched = xl_base xl_base_patched_hash = '' return xl_base_hash = name xl_base_patched = xl_base xl_base_patched_hash = '' print(f'Base model loaded: {xl_base_hash}') return def refresh_refiner_model(name): global xl_refiner, xl_refiner_hash if xl_refiner_hash == str(name): return if name == 'None': xl_refiner = None xl_refiner_hash = '' print(f'Refiner unloaded.') return filename = os.path.join(modules.path.modelfile_path, name) if xl_refiner is not None: xl_refiner.to_meta() xl_refiner = None xl_refiner = core.load_model(filename) if not isinstance(xl_refiner.unet.model, SDXLRefiner): print('Model not supported. Fooocus only support SDXL refiner as the refiner.') xl_refiner = None xl_refiner_hash = '' print(f'Refiner unloaded.') return xl_refiner_hash = name print(f'Refiner model loaded: {xl_refiner_hash}') xl_refiner.vae.first_stage_model.to('meta') xl_refiner.vae = None return def refresh_loras(loras): global xl_base, xl_base_patched, xl_base_patched_hash if xl_base_patched_hash == str(loras): return model = xl_base for name, weight in loras: if name == 'None': continue filename = os.path.join(modules.path.lorafile_path, name) model = core.load_lora(model, filename, strength_model=weight, strength_clip=weight) xl_base_patched = model xl_base_patched_hash = str(loras) print(f'LoRAs loaded: {xl_base_patched_hash}') return refresh_base_model(modules.path.default_base_model_name) refresh_refiner_model(modules.path.default_refiner_model_name) refresh_loras([(modules.path.default_lora_name, 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5)]) positive_conditions_cache = None negative_conditions_cache = None positive_conditions_refiner_cache = None negative_conditions_refiner_cache = None def clean_prompt_cond_caches(): global positive_conditions_cache, negative_conditions_cache, \ positive_conditions_refiner_cache, negative_conditions_refiner_cache positive_conditions_cache = None negative_conditions_cache = None positive_conditions_refiner_cache = None negative_conditions_refiner_cache = None return @torch.no_grad() def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback): global positive_conditions_cache, negative_conditions_cache, \ positive_conditions_refiner_cache, negative_conditions_refiner_cache positive_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=positive_prompt) if positive_conditions_cache is None else positive_conditions_cache negative_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=negative_prompt) if negative_conditions_cache is None else negative_conditions_cache positive_conditions_cache = positive_conditions negative_conditions_cache = negative_conditions empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1) if xl_refiner is not None: positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) if positive_conditions_refiner_cache is None else positive_conditions_refiner_cache negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) if negative_conditions_refiner_cache is None else negative_conditions_refiner_cache positive_conditions_refiner_cache = positive_conditions_refiner negative_conditions_refiner_cache = negative_conditions_refiner sampled_latent = core.ksampler_with_refiner( model=xl_base_patched.unet, positive=positive_conditions, negative=negative_conditions, refiner=xl_refiner.unet, refiner_positive=positive_conditions_refiner, refiner_negative=negative_conditions_refiner, refiner_switch_step=switch, latent=empty_latent, steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True, seed=image_seed, callback_function=callback ) else: sampled_latent = core.ksampler( model=xl_base_patched.unet, positive=positive_conditions, negative=negative_conditions, latent=empty_latent, steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True, seed=image_seed, callback_function=callback ) decoded_latent = core.decode_vae(vae=xl_base_patched.vae, latent_image=sampled_latent) images = core.image_to_numpy(decoded_latent) return images