|
import os |
|
import torch |
|
import modules.core as core |
|
|
|
from modules.path import modelfile_path |
|
|
|
|
|
xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors') |
|
xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors') |
|
|
|
xl_base = core.load_model(xl_base_filename) |
|
xl_refiner = core.load_model(xl_refiner_filename) |
|
del xl_base.vae |
|
|
|
|
|
@torch.no_grad() |
|
def process(positive_prompt, negative_prompt, width=1024, height=1024, batch_size=1): |
|
positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt) |
|
negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt) |
|
|
|
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) |
|
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) |
|
|
|
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=batch_size) |
|
|
|
sampled_latent = core.ksampler( |
|
model=xl_base.unet, |
|
positive=positive_conditions, |
|
negative=negative_conditions, |
|
latent=empty_latent, |
|
steps=30, start_step=0, last_step=20, disable_noise=False, force_full_denoise=False |
|
) |
|
|
|
sampled_latent = core.ksampler( |
|
model=xl_refiner.unet, |
|
positive=positive_conditions_refiner, |
|
negative=negative_conditions_refiner, |
|
latent=sampled_latent, |
|
steps=30, start_step=20, last_step=30, disable_noise=True, force_full_denoise=True |
|
) |
|
|
|
decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent) |
|
|
|
images = core.image_to_numpy(decoded_latent) |
|
return images |
|
|