|
"""Utility functions for training and inference.""" |
|
import math |
|
import pickle |
|
import sys |
|
from contextlib import nullcontext |
|
from io import BytesIO |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, ContextManager, Dict, List, Mapping, Optional, TypeVar, Union |
|
|
|
import lightning as L |
|
import torch |
|
import torch.nn as nn |
|
import torch.utils._device |
|
from lightning.fabric.strategies import FSDPStrategy |
|
from lightning.fabric.utilities.load import _lazy_load as lazy_load |
|
from torch.serialization import normalize_storage_type |
|
|
|
if TYPE_CHECKING: |
|
from model import GPT |
|
|
|
|
|
def find_multiple(n: int, k: int) -> int: |
|
assert k > 0 |
|
if n % k == 0: |
|
return n |
|
return n + k - (n % k) |
|
|
|
|
|
def num_parameters(module: nn.Module, requires_grad: Optional[bool] = None) -> int: |
|
total = 0 |
|
for p in module.parameters(): |
|
if requires_grad is None or p.requires_grad == requires_grad: |
|
if hasattr(p, "quant_state"): |
|
|
|
total += math.prod(p.quant_state[1]) |
|
else: |
|
total += p.numel() |
|
return total |
|
|
|
|
|
def gptq_quantization(enabled: bool = False) -> ContextManager: |
|
if not enabled: |
|
return nullcontext() |
|
|
|
from lightning.fabric.plugins.precision.utils import _ClassReplacementContextManager |
|
|
|
from quantize.gptq import ColBlockQuantizedLinear |
|
|
|
class QuantizedLinear(ColBlockQuantizedLinear): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, bits=4, tile_cols=-1, **kwargs) |
|
|
|
return _ClassReplacementContextManager({"torch.nn.Linear": QuantizedLinear}) |
|
|
|
|
|
def check_valid_checkpoint_dir(checkpoint_dir: Path) -> None: |
|
files = { |
|
"lit_model.pth": (checkpoint_dir / "lit_model.pth").is_file(), |
|
"lit_config.json": (checkpoint_dir / "lit_config.json").is_file(), |
|
"tokenizer.json OR tokenizer.model": (checkpoint_dir / "tokenizer.json").is_file() or ( |
|
checkpoint_dir / "tokenizer.model" |
|
).is_file(), |
|
"tokenizer_config.json": (checkpoint_dir / "tokenizer_config.json").is_file(), |
|
} |
|
if checkpoint_dir.is_dir(): |
|
if all(files.values()): |
|
|
|
return |
|
problem = f" is missing the files: {[f for f, exists in files.items() if not exists]!r}" |
|
else: |
|
problem = " is not a checkpoint directory" |
|
|
|
|
|
available = list(Path("checkpoints").glob("*/*")) |
|
if available: |
|
options = "\n --checkpoint_dir ".join([""] + [repr(str(p.resolve())) for p in available]) |
|
extra = f"\nYou have downloaded locally:{options}\n" |
|
else: |
|
extra = "" |
|
|
|
error_message = ( |
|
f"--checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}." |
|
"\nFind download instructions at https://github.com/Lightning-AI/lit-gpt/blob/main/tutorials\n" |
|
f"{extra}\nSee all download options by running:\n python scripts/download.py" |
|
) |
|
print(error_message, file=sys.stderr) |
|
raise SystemExit(1) |
|
|
|
|
|
class SavingProxyForStorage: |
|
def __init__(self, obj, saver, protocol_version=5): |
|
self.protocol_version = protocol_version |
|
self.saver = saver |
|
if not (isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj)): |
|
raise TypeError(f"expected storage, not {type(obj)}") |
|
|
|
|
|
if isinstance(obj, torch.storage.TypedStorage): |
|
|
|
storage = obj._untyped_storage |
|
storage_type_str = obj._pickle_storage_type() |
|
storage_type = getattr(torch, storage_type_str) |
|
storage_numel = obj._size() |
|
else: |
|
storage = obj |
|
storage_type = normalize_storage_type(type(obj)) |
|
storage_numel = storage.nbytes() |
|
|
|
storage_key = saver._write_storage_and_return_key(storage) |
|
location = torch.serialization.location_tag(storage) |
|
|
|
self.storage_info = ("storage", storage_type, storage_key, location, storage_numel) |
|
|
|
def __reduce_ex__(self, protocol_version): |
|
assert False, "this should be handled with out of band" |
|
|
|
|
|
class SavingProxyForTensor: |
|
def __init__(self, tensor, saver, protocol_version=5): |
|
self.protocol_version = protocol_version |
|
self.reduce_ret_fn, reduce_args = tensor.__reduce_ex__(protocol_version) |
|
if reduce_args[0] == torch._utils._rebuild_tensor_v2: |
|
|
|
(a0, a1, (storage, *a2_other), *other_reduce_args) = reduce_args |
|
assert isinstance(storage, torch.storage.TypedStorage), "Please check for updates" |
|
storage_proxy = SavingProxyForStorage(storage, saver, protocol_version=protocol_version) |
|
self.reduce_args = (a0, a1, (storage_proxy, *a2_other), *other_reduce_args) |
|
else: |
|
(storage, *other_reduce_args) = reduce_args |
|
assert isinstance(storage, torch.storage.TypedStorage), "Please check for updates" |
|
storage_proxy = SavingProxyForStorage(storage, saver, protocol_version=protocol_version) |
|
self.reduce_args = (storage_proxy, *other_reduce_args) |
|
|
|
def __reduce_ex__(self, protocol_version): |
|
if protocol_version != self.protocol_version: |
|
raise RuntimeError(f"Unexpected protocol version: expected {self.protocol_version}, got {protocol_version}") |
|
return self.reduce_ret_fn, self.reduce_args |
|
|
|
|
|
class IncrementalPyTorchPickler(pickle.Pickler): |
|
def __init__(self, saver, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.storage_dtypes = {} |
|
self.saver = saver |
|
self.id_map = {} |
|
|
|
|
|
def persistent_id(self, obj): |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(obj, SavingProxyForStorage): |
|
return obj.storage_info |
|
|
|
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj): |
|
if isinstance(obj, torch.storage.TypedStorage): |
|
|
|
|
|
storage = obj._untyped_storage |
|
storage_dtype = obj.dtype |
|
storage_type_str = obj._pickle_storage_type() |
|
storage_type = getattr(torch, storage_type_str) |
|
storage_numel = obj._size() |
|
|
|
else: |
|
storage = obj |
|
storage_dtype = torch.uint8 |
|
storage_type = normalize_storage_type(type(obj)) |
|
storage_numel = storage.nbytes() |
|
|
|
|
|
|
|
|
|
if storage.data_ptr() != 0: |
|
if storage.data_ptr() in self.storage_dtypes: |
|
if storage_dtype != self.storage_dtypes[storage.data_ptr()]: |
|
raise RuntimeError( |
|
"Cannot save multiple tensors or storages that view the same data as different types" |
|
) |
|
else: |
|
self.storage_dtypes[storage.data_ptr()] = storage_dtype |
|
|
|
storage_key = self.id_map.get(storage._cdata) |
|
if storage_key is None: |
|
storage_key = self.saver._write_storage_and_return_key(storage) |
|
self.id_map[storage._cdata] = storage_key |
|
location = torch.serialization.location_tag(storage) |
|
|
|
return ("storage", storage_type, storage_key, location, storage_numel) |
|
|
|
return None |
|
|
|
|
|
class incremental_save: |
|
def __init__(self, name): |
|
self.name = name |
|
self.zipfile = torch._C.PyTorchFileWriter(str(name)) |
|
self.has_saved = False |
|
self.next_key = 0 |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def store_early(self, tensor): |
|
if isinstance(tensor, torch.Tensor): |
|
return SavingProxyForTensor(tensor, self) |
|
raise TypeError(f"can only store tensors early, not {type(tensor)}") |
|
|
|
def save(self, obj): |
|
if self.has_saved: |
|
raise RuntimeError("have already saved") |
|
|
|
data_buf = BytesIO() |
|
pickler = IncrementalPyTorchPickler(self, data_buf, protocol=5) |
|
pickler.dump(obj) |
|
data_value = data_buf.getvalue() |
|
self.zipfile.write_record("data.pkl", data_value, len(data_value)) |
|
self.has_saved = True |
|
|
|
def _write_storage_and_return_key(self, storage): |
|
if self.has_saved: |
|
raise RuntimeError("have already saved") |
|
key = self.next_key |
|
self.next_key += 1 |
|
name = f"data/{key}" |
|
if storage.device.type != "cpu": |
|
storage = storage.cpu() |
|
num_bytes = storage.nbytes() |
|
self.zipfile.write_record(name, storage.data_ptr(), num_bytes) |
|
return key |
|
|
|
def __exit__(self, type, value, traceback): |
|
self.zipfile.write_end_of_file() |
|
|
|
|
|
T = TypeVar("T") |
|
|
|
|
|
def chunked_cross_entropy( |
|
logits: Union[torch.Tensor, List[torch.Tensor]], targets: torch.Tensor, chunk_size: int = 128 |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(logits, list): |
|
|
|
if chunk_size == 0: |
|
logits = torch.cat(logits, dim=1) |
|
logits = logits.reshape(-1, logits.size(-1)) |
|
targets = targets.reshape(-1) |
|
return torch.nn.functional.cross_entropy(logits, targets, ignore_index=-1) |
|
|
|
|
|
logit_chunks = [logit_chunk.reshape(-1, logit_chunk.size(-1)) for logit_chunk in logits] |
|
target_chunks = [target_chunk.reshape(-1) for target_chunk in targets.split(logits[0].size(1), dim=1)] |
|
loss_chunks = [ |
|
torch.nn.functional.cross_entropy(logit_chunk, target_chunk, ignore_index=-1, reduction="none") |
|
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks) |
|
] |
|
return torch.cat(loss_chunks).mean() |
|
|
|
|
|
logits = logits.reshape(-1, logits.size(-1)) |
|
targets = targets.reshape(-1) |
|
if chunk_size == 0: |
|
return torch.nn.functional.cross_entropy(logits, targets, ignore_index=-1) |
|
|
|
|
|
logit_chunks = logits.split(chunk_size) |
|
target_chunks = targets.split(chunk_size) |
|
loss_chunks = [ |
|
torch.nn.functional.cross_entropy(logit_chunk, target_chunk, ignore_index=-1, reduction="none") |
|
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks) |
|
] |
|
return torch.cat(loss_chunks).mean() |
|
|
|
|
|
def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str) -> Dict: |
|
for checkpoint_name, attribute_name in mapping.items(): |
|
full_checkpoint_name = prefix + checkpoint_name |
|
if full_checkpoint_name in state_dict: |
|
full_attribute_name = prefix + attribute_name |
|
state_dict[full_attribute_name] = state_dict.pop(full_checkpoint_name) |
|
return state_dict |
|
|
|
|
|
def get_default_supported_precision(training: bool) -> str: |
|
"""Return default precision that is supported by the hardware: either `bf16` or `16`. |
|
|
|
Args: |
|
training: `-mixed` or `-true` version of the precision to use |
|
|
|
Returns: |
|
default precision that is suitable for the task and is supported by the hardware |
|
""" |
|
from lightning.fabric.accelerators import MPSAccelerator |
|
|
|
if MPSAccelerator.is_available() or (torch.cuda.is_available() and not torch.cuda.is_bf16_supported()): |
|
return "16-mixed" if training else "16-true" |
|
return "bf16-mixed" if training else "bf16-true" |
|
|
|
|
|
def load_checkpoint(fabric: L.Fabric, model: nn.Module, checkpoint_path: Path, strict: bool = True) -> None: |
|
if isinstance(fabric.strategy, FSDPStrategy): |
|
fabric.load_raw(checkpoint_path, model, strict=strict) |
|
else: |
|
state_dict = lazy_load(checkpoint_path) |
|
state_dict = state_dict.get("model", state_dict) |
|
model.load_state_dict(state_dict, strict=strict) |
|
|
|
|
|
def flops_per_param(max_seq_length: int, n_layer: int, n_embd: int, n_params: int) -> int: |
|
flops_per_token = 2 * n_params |
|
|
|
|
|
flops_per_seq = flops_per_token * max_seq_length |
|
attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2)) |
|
return flops_per_seq + attn_flops_per_seq |
|
|
|
|
|
def estimate_flops(model: "GPT", training: bool) -> int: |
|
"""Measures estimated FLOPs for MFU. |
|
|
|
Refs: |
|
* https://ar5iv.labs.arxiv.org/html/2205.05198#A1 |
|
* https://ar5iv.labs.arxiv.org/html/2204.02311#A2 |
|
""" |
|
|
|
|
|
|
|
|
|
n_trainable_params = num_parameters(model, requires_grad=True) |
|
trainable_flops = flops_per_param( |
|
model.max_seq_length, model.config.n_layer, model.config.n_embd, n_trainable_params |
|
) |
|
|
|
ops_per_step = 3 if training else 1 |
|
n_frozen_params = num_parameters(model, requires_grad=False) |
|
frozen_flops = flops_per_param(model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params) |
|
|
|
frozen_ops_per_step = 2 if training else 1 |
|
return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops |