import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont import librosa import librosa.display import gradio as gr import soundfile as sf import os # Function for creating a spectrogram image with text def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5): font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" if os.path.exists(font_path): font = ImageFont.truetype(font_path, max_font_size) else: font = ImageFont.load_default() image = Image.new('L', (base_width, height), 'black') draw = ImageDraw.Draw(image) text_width = 0 for char in text: text_bbox = draw.textbbox((0, 0), char, font=font) text_width += text_bbox[2] - text_bbox[0] + letter_spacing text_width -= letter_spacing if text_width + margin * 2 > base_width: width = text_width + margin * 2 else: width = base_width image = Image.new('L', (width, height), 'black') draw = ImageDraw.Draw(image) text_x = (width - text_width) // 2 text_y = (height - (text_bbox[3] - text_bbox[1])) // 2 for char in text: draw.text((text_x, text_y), char, font=font, fill='white') char_bbox = draw.textbbox((0, 0), char, font=font) text_x += char_bbox[2] - char_bbox[0] + letter_spacing image = np.array(image) image = np.where(image > 0, 255, image) return image # Converting an image to audio def spectrogram_image_to_audio(image, sr=22050): flipped_image = np.flipud(image) S = flipped_image.astype(np.float32) / 255.0 * 100.0 y = librosa.griffinlim(S) return y # Function for creating an audio file and spectrogram from text def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing): spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing) y = spectrogram_image_to_audio(spec_image) audio_path = 'output.wav' sf.write(audio_path, y, 22050) image_path = 'spectrogram.png' plt.imsave(image_path, spec_image, cmap='gray') return audio_path, image_path # Function for displaying the spectrogram of an audio file def display_audio_spectrogram(audio_path): y, sr = librosa.load(audio_path) S = librosa.feature.melspectrogram(y=y, sr=sr) S_dB = librosa.power_to_db(S, ref=np.max) plt.figure(figsize=(10, 4)) librosa.display.specshow(S_dB) plt.tight_layout() spectrogram_path = 'uploaded_spectrogram.png' plt.savefig(spectrogram_path) plt.close() return spectrogram_path # Converting a downloaded image to an audio spectrogram def image_to_spectrogram_audio(image_path, sr=22050): image = Image.open(image_path).convert('L') image = np.array(image) y = spectrogram_image_to_audio(image, sr) audio_path = 'image_to_audio_output.wav' sf.write(audio_path, y, sr) return audio_path # Gradio interface with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as iface: with gr.Group(): with gr.Row(variant='panel'): with gr.Column(): gr.HTML("

Telegram Channel

") with gr.Column(): gr.HTML("

Telegram Chat

") with gr.Column(): gr.HTML("

YouTube

") with gr.Column(): gr.HTML("

GitHub

") with gr.Tab("Text to Spectrogram"): with gr.Group(): text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text") with gr.Row(variant='panel'): base_width = gr.Slider(value=512, label="Image Width", visible=False) height = gr.Slider(value=256, label="Image Height", visible=False) max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label="Font size") margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Indent") letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label="Letter spacing") generate_button = gr.Button("Generate") with gr.Column(variant='panel'): with gr.Group(): output_audio = gr.Audio(type="filepath", label="Generated audio") output_image = gr.Image(type="filepath", label="Spectrogram") def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing): return create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing) generate_button.click( gradio_interface_fn, inputs=[text, base_width, height, max_font_size, margin, letter_spacing], outputs=[output_audio, output_image] ) with gr.Tab("Image to Spectrogram"): with gr.Group(): with gr.Row(variant='panel'): upload_image = gr.Image(type="filepath", label="Upload image") convert_button = gr.Button("Convert to audio") with gr.Column(variant='panel'): output_audio_from_image = gr.Audio(type="filepath", label="Generated audio") def gradio_image_to_audio_fn(upload_image): return image_to_spectrogram_audio(upload_image) convert_button.click( gradio_image_to_audio_fn, inputs=[upload_image], outputs=[output_audio_from_image] ) with gr.Tab("Audio Spectrogram"): with gr.Group(): with gr.Row(variant='panel'): upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3) decode_button = gr.Button("Show spectrogram", scale=2) with gr.Column(variant='panel'): decoded_image = gr.Image(type="filepath", label="Audio Spectrogram") def gradio_decode_fn(upload_audio): return display_audio_spectrogram(upload_audio) decode_button.click( gradio_decode_fn, inputs=[upload_audio], outputs=[decoded_image] ) iface.launch(share=True)