Spaces:
Runtime error
Runtime error
Depth guided generation
Browse files- app.py +3 -0
- app_canny.py +7 -7
- app_depth.py +77 -0
- model.py +71 -0
- utils.py +29 -9
app.py
CHANGED
@@ -7,6 +7,7 @@ from app_pose import create_demo as create_demo_pose
|
|
7 |
from app_text_to_video import create_demo as create_demo_text_to_video
|
8 |
from app_pix2pix_video import create_demo as create_demo_pix2pix_video
|
9 |
from app_canny_db import create_demo as create_demo_canny_db
|
|
|
10 |
import argparse
|
11 |
import os
|
12 |
|
@@ -62,6 +63,8 @@ with gr.Blocks(css='style.css') as demo:
|
|
62 |
create_demo_canny(model)
|
63 |
with gr.Tab('Edge Conditional and Dreambooth Specialized'):
|
64 |
create_demo_canny_db(model)
|
|
|
|
|
65 |
'''
|
66 |
'''
|
67 |
gr.HTML(
|
|
|
7 |
from app_text_to_video import create_demo as create_demo_text_to_video
|
8 |
from app_pix2pix_video import create_demo as create_demo_pix2pix_video
|
9 |
from app_canny_db import create_demo as create_demo_canny_db
|
10 |
+
from app_depth import create_demo as create_demo_depth
|
11 |
import argparse
|
12 |
import os
|
13 |
|
|
|
63 |
create_demo_canny(model)
|
64 |
with gr.Tab('Edge Conditional and Dreambooth Specialized'):
|
65 |
create_demo_canny_db(model)
|
66 |
+
with gr.Tab('Depth Conditional'):
|
67 |
+
create_demo_depth(model)
|
68 |
'''
|
69 |
'''
|
70 |
gr.HTML(
|
app_canny.py
CHANGED
@@ -7,19 +7,19 @@ on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
|
7 |
def create_demo(model: Model):
|
8 |
|
9 |
examples = [
|
10 |
-
["__assets__/
|
11 |
"white butterfly, a high-quality, detailed, and professional photo"],
|
12 |
-
["__assets__/
|
13 |
"oil painting of a deer, a high-quality, detailed, and professional photo"],
|
14 |
-
["__assets__/
|
15 |
"wild red fox is walking on the grass, a high-quality, detailed, and professional photo"],
|
16 |
-
["__assets__/
|
17 |
"oil painting of a girl dancing close-up, masterpiece, a high-quality, detailed, and professional photo"],
|
18 |
-
["__assets__/
|
19 |
"oil painting of a beautiful girl, a high-quality, detailed, and professional photo"],
|
20 |
-
["__assets__/
|
21 |
"beautiful girl halloween style, a high-quality, detailed, and professional photo"],
|
22 |
-
["__assets__/
|
23 |
"a santa claus, a high-quality, detailed, and professional photo"],
|
24 |
]
|
25 |
|
|
|
7 |
def create_demo(model: Model):
|
8 |
|
9 |
examples = [
|
10 |
+
["__assets__/canny_videos_edge/butterfly.mp4",
|
11 |
"white butterfly, a high-quality, detailed, and professional photo"],
|
12 |
+
["__assets__/canny_videos_edge/deer.mp4",
|
13 |
"oil painting of a deer, a high-quality, detailed, and professional photo"],
|
14 |
+
["__assets__/canny_videos_edge/fox.mp4",
|
15 |
"wild red fox is walking on the grass, a high-quality, detailed, and professional photo"],
|
16 |
+
["__assets__/canny_videos_edge/girl_dancing.mp4",
|
17 |
"oil painting of a girl dancing close-up, masterpiece, a high-quality, detailed, and professional photo"],
|
18 |
+
["__assets__/canny_videos_edge/girl_turning.mp4",
|
19 |
"oil painting of a beautiful girl, a high-quality, detailed, and professional photo"],
|
20 |
+
["__assets__/canny_videos_edge/halloween.mp4",
|
21 |
"beautiful girl halloween style, a high-quality, detailed, and professional photo"],
|
22 |
+
["__assets__/canny_videos_edge/santa.mp4",
|
23 |
"a santa claus, a high-quality, detailed, and professional photo"],
|
24 |
]
|
25 |
|
app_depth.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from model import Model
|
3 |
+
import os
|
4 |
+
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
5 |
+
|
6 |
+
|
7 |
+
def create_demo(model: Model):
|
8 |
+
|
9 |
+
examples = [
|
10 |
+
["__assets__/depth_videos/butterfly.mp4",
|
11 |
+
"white butterfly, a high-quality, detailed, and professional photo"],
|
12 |
+
["__assets__/depth_videos/deer.mp4",
|
13 |
+
"oil painting of a deer, a high-quality, detailed, and professional photo"],
|
14 |
+
["__assets__/depth_videos/fox.mp4",
|
15 |
+
"wild red fox is walking on the grass, a high-quality, detailed, and professional photo"],
|
16 |
+
["__assets__/depth_videos/girl_dancing.mp4",
|
17 |
+
"oil painting of a girl dancing close-up, masterpiece, a high-quality, detailed, and professional photo"],
|
18 |
+
["__assets__/depth_videos/girl_turning.mp4",
|
19 |
+
"oil painting of a beautiful girl, a high-quality, detailed, and professional photo"],
|
20 |
+
["__assets__/depth_videos/halloween.mp4",
|
21 |
+
"beautiful girl halloween style, a high-quality, detailed, and professional photo"],
|
22 |
+
["__assets__/depth_videos/santa.mp4",
|
23 |
+
"a santa claus, a high-quality, detailed, and professional photo"],
|
24 |
+
]
|
25 |
+
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
with gr.Row():
|
28 |
+
gr.Markdown('## Text and Depth Conditional Video Generation')
|
29 |
+
with gr.Row():
|
30 |
+
gr.HTML(
|
31 |
+
"""
|
32 |
+
<div style="text-align: left; auto;">
|
33 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
34 |
+
Description: For performance purposes, our current preview release supports any input videos but caps output videos after 80 frames and the input videos are scaled down before processing.
|
35 |
+
</h3>
|
36 |
+
</div>
|
37 |
+
""")
|
38 |
+
|
39 |
+
with gr.Row():
|
40 |
+
with gr.Column():
|
41 |
+
input_video = gr.Video(
|
42 |
+
label="Input Video", source='upload', format="mp4", visible=True).style(height="auto")
|
43 |
+
with gr.Column():
|
44 |
+
prompt = gr.Textbox(label='Prompt')
|
45 |
+
run_button = gr.Button(label='Run')
|
46 |
+
with gr.Accordion('Advanced options', open=False):
|
47 |
+
watermark = gr.Radio(["Picsart AI Research", "Text2Video-Zero",
|
48 |
+
"None"], label="Watermark", value='Picsart AI Research')
|
49 |
+
chunk_size = gr.Slider(
|
50 |
+
label="Chunk size", minimum=2, maximum=16, value=8, step=1, visible=not on_huggingspace,
|
51 |
+
info="Number of frames processed at once. Reduce for lower memory usage.")
|
52 |
+
merging_ratio = gr.Slider(
|
53 |
+
label="Merging ratio", minimum=0.0, maximum=0.9, step=0.1, value=0.0, visible=not on_huggingspace,
|
54 |
+
info="Ratio of how many tokens are merged. The higher the more compression (less memory and faster inference).")
|
55 |
+
with gr.Column():
|
56 |
+
result = gr.Video(label="Generated Video").style(height="auto")
|
57 |
+
|
58 |
+
inputs = [
|
59 |
+
input_video,
|
60 |
+
prompt,
|
61 |
+
chunk_size,
|
62 |
+
watermark,
|
63 |
+
merging_ratio,
|
64 |
+
]
|
65 |
+
|
66 |
+
gr.Examples(examples=examples,
|
67 |
+
inputs=inputs,
|
68 |
+
outputs=result,
|
69 |
+
fn=model.process_controlnet_depth,
|
70 |
+
cache_examples=on_huggingspace,
|
71 |
+
run_on_click=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
run_button.click(fn=model.process_controlnet_depth,
|
75 |
+
inputs=inputs,
|
76 |
+
outputs=result,)
|
77 |
+
return demo
|
model.py
CHANGED
@@ -13,6 +13,8 @@ import gradio_utils
|
|
13 |
import os
|
14 |
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
15 |
|
|
|
|
|
16 |
|
17 |
class ModelType(Enum):
|
18 |
Pix2Pix_Video = 1,
|
@@ -20,6 +22,7 @@ class ModelType(Enum):
|
|
20 |
ControlNetCanny = 3,
|
21 |
ControlNetCannyDB = 4,
|
22 |
ControlNetPose = 5,
|
|
|
23 |
|
24 |
|
25 |
class Model:
|
@@ -33,6 +36,7 @@ class Model:
|
|
33 |
ModelType.ControlNetCanny: StableDiffusionControlNetPipeline,
|
34 |
ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline,
|
35 |
ModelType.ControlNetPose: StableDiffusionControlNetPipeline,
|
|
|
36 |
}
|
37 |
self.controlnet_attn_proc = utils.CrossFrameAttnProcessor(
|
38 |
unet_chunk_size=2)
|
@@ -165,6 +169,73 @@ class Model:
|
|
165 |
video_path, resolution, self.device, self.dtype, False)
|
166 |
control = utils.pre_process_canny(
|
167 |
video, low_threshold, high_threshold).to(self.device).to(self.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
f, _, h, w = video.shape
|
169 |
self.generator.manual_seed(seed)
|
170 |
latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype,
|
|
|
13 |
import os
|
14 |
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
15 |
|
16 |
+
from einops import rearrange
|
17 |
+
|
18 |
|
19 |
class ModelType(Enum):
|
20 |
Pix2Pix_Video = 1,
|
|
|
22 |
ControlNetCanny = 3,
|
23 |
ControlNetCannyDB = 4,
|
24 |
ControlNetPose = 5,
|
25 |
+
ControlNetDepth = 6,
|
26 |
|
27 |
|
28 |
class Model:
|
|
|
36 |
ModelType.ControlNetCanny: StableDiffusionControlNetPipeline,
|
37 |
ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline,
|
38 |
ModelType.ControlNetPose: StableDiffusionControlNetPipeline,
|
39 |
+
ModelType.ControlNetDepth: StableDiffusionControlNetPipeline,
|
40 |
}
|
41 |
self.controlnet_attn_proc = utils.CrossFrameAttnProcessor(
|
42 |
unet_chunk_size=2)
|
|
|
169 |
video_path, resolution, self.device, self.dtype, False)
|
170 |
control = utils.pre_process_canny(
|
171 |
video, low_threshold, high_threshold).to(self.device).to(self.dtype)
|
172 |
+
|
173 |
+
# canny_to_save = list(rearrange(control, 'f c w h -> f w h c').cpu().detach().numpy())
|
174 |
+
# _ = utils.create_video(canny_to_save, 4, path="ddxk.mp4", watermark=None)
|
175 |
+
|
176 |
+
f, _, h, w = video.shape
|
177 |
+
self.generator.manual_seed(seed)
|
178 |
+
latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype,
|
179 |
+
device=self.device, generator=self.generator)
|
180 |
+
latents = latents.repeat(f, 1, 1, 1)
|
181 |
+
result = self.inference(image=control,
|
182 |
+
prompt=prompt + ', ' + added_prompt,
|
183 |
+
height=h,
|
184 |
+
width=w,
|
185 |
+
negative_prompt=negative_prompts,
|
186 |
+
num_inference_steps=num_inference_steps,
|
187 |
+
guidance_scale=guidance_scale,
|
188 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
189 |
+
eta=eta,
|
190 |
+
latents=latents,
|
191 |
+
seed=seed,
|
192 |
+
output_type='numpy',
|
193 |
+
split_to_chunks=True,
|
194 |
+
chunk_size=chunk_size,
|
195 |
+
merging_ratio=merging_ratio,
|
196 |
+
)
|
197 |
+
return utils.create_video(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark))
|
198 |
+
|
199 |
+
def process_controlnet_depth(self,
|
200 |
+
video_path,
|
201 |
+
prompt,
|
202 |
+
chunk_size=8,
|
203 |
+
watermark='Picsart AI Research',
|
204 |
+
merging_ratio=0.0,
|
205 |
+
num_inference_steps=20,
|
206 |
+
controlnet_conditioning_scale=1.0,
|
207 |
+
guidance_scale=9.0,
|
208 |
+
seed=42,
|
209 |
+
eta=0.0,
|
210 |
+
resolution=512,
|
211 |
+
use_cf_attn=True,
|
212 |
+
save_path=None):
|
213 |
+
print("Module Depth")
|
214 |
+
video_path = gradio_utils.edge_path_to_video_path(video_path)
|
215 |
+
if self.model_type != ModelType.ControlNetDepth:
|
216 |
+
controlnet = ControlNetModel.from_pretrained(
|
217 |
+
"lllyasviel/sd-controlnet-depth")
|
218 |
+
self.set_model(ModelType.ControlNetDepth,
|
219 |
+
model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet)
|
220 |
+
self.pipe.scheduler = DDIMScheduler.from_config(
|
221 |
+
self.pipe.scheduler.config)
|
222 |
+
if use_cf_attn:
|
223 |
+
self.pipe.unet.set_attn_processor(
|
224 |
+
processor=self.controlnet_attn_proc)
|
225 |
+
self.pipe.controlnet.set_attn_processor(
|
226 |
+
processor=self.controlnet_attn_proc)
|
227 |
+
|
228 |
+
# added_prompt = 'best quality, extremely detailed'
|
229 |
+
# negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
230 |
+
|
231 |
+
video, fps = utils.prepare_video(
|
232 |
+
video_path, resolution, self.device, self.dtype, False)
|
233 |
+
control = utils.pre_process_depth(
|
234 |
+
video).to(self.device).to(self.dtype)
|
235 |
+
|
236 |
+
depth_map_to_save = list(rearrange(control, 'f c w h -> f w h c').cpu().detach().numpy())
|
237 |
+
_ = utils.create_video(depth_map_to_save, 4, path="ddxk.mp4", watermark=None)
|
238 |
+
|
239 |
f, _, h, w = video.shape
|
240 |
self.generator.manual_seed(seed)
|
241 |
latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype,
|
utils.py
CHANGED
@@ -12,11 +12,12 @@ from PIL import Image
|
|
12 |
from annotator.util import resize_image, HWC3
|
13 |
from annotator.canny import CannyDetector
|
14 |
from annotator.openpose import OpenposeDetector
|
|
|
15 |
import decord
|
16 |
-
# decord.bridge.set_bridge('torch')
|
17 |
|
18 |
apply_canny = CannyDetector()
|
19 |
apply_openpose = OpenposeDetector()
|
|
|
20 |
|
21 |
|
22 |
def add_watermark(image, watermark_path, wm_rel_size=1/16, boundary=5):
|
@@ -55,6 +56,24 @@ def pre_process_canny(input_video, low_threshold=100, high_threshold=200):
|
|
55 |
return rearrange(control, 'f h w c -> f c h w')
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def pre_process_pose(input_video, apply_pose_detect: bool = True):
|
59 |
detected_maps = []
|
60 |
for frame in input_video:
|
@@ -137,14 +156,15 @@ def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True,
|
|
137 |
_, h, w, _ = video.shape
|
138 |
video = rearrange(video, "f h w c -> f c h w")
|
139 |
video = torch.Tensor(video).to(device).to(dtype)
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
148 |
video = Resize((h, w), interpolation=InterpolationMode.BILINEAR, antialias=True)(video)
|
149 |
if normalize:
|
150 |
video = video / 127.5 - 1.0
|
|
|
12 |
from annotator.util import resize_image, HWC3
|
13 |
from annotator.canny import CannyDetector
|
14 |
from annotator.openpose import OpenposeDetector
|
15 |
+
from annotator.midas import MidasDetector
|
16 |
import decord
|
|
|
17 |
|
18 |
apply_canny = CannyDetector()
|
19 |
apply_openpose = OpenposeDetector()
|
20 |
+
apply_midas = MidasDetector()
|
21 |
|
22 |
|
23 |
def add_watermark(image, watermark_path, wm_rel_size=1/16, boundary=5):
|
|
|
56 |
return rearrange(control, 'f h w c -> f c h w')
|
57 |
|
58 |
|
59 |
+
def pre_process_depth(input_video, apply_depth_detect: bool = True):
|
60 |
+
detected_maps = []
|
61 |
+
for frame in input_video:
|
62 |
+
img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
|
63 |
+
img = HWC3(img)
|
64 |
+
if apply_depth_detect:
|
65 |
+
detected_map, _ = apply_midas(img)
|
66 |
+
else:
|
67 |
+
detected_map = img
|
68 |
+
detected_map = HWC3(detected_map)
|
69 |
+
H, W, C = img.shape
|
70 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
71 |
+
detected_maps.append(detected_map[None])
|
72 |
+
detected_maps = np.concatenate(detected_maps)
|
73 |
+
control = torch.from_numpy(detected_maps.copy()).float() / 255.0
|
74 |
+
return rearrange(control, 'f h w c -> f c h w')
|
75 |
+
|
76 |
+
|
77 |
def pre_process_pose(input_video, apply_pose_detect: bool = True):
|
78 |
detected_maps = []
|
79 |
for frame in input_video:
|
|
|
156 |
_, h, w, _ = video.shape
|
157 |
video = rearrange(video, "f h w c -> f c h w")
|
158 |
video = torch.Tensor(video).to(device).to(dtype)
|
159 |
+
|
160 |
+
# Use max if you want the larger side to be equal to resolution (e.g. 512)
|
161 |
+
# k = float(resolution) / min(h, w)
|
162 |
+
k = float(resolution) / max(h, w)
|
163 |
+
h *= k
|
164 |
+
w *= k
|
165 |
+
h = int(np.round(h / 64.0)) * 64
|
166 |
+
w = int(np.round(w / 64.0)) * 64
|
167 |
+
|
168 |
video = Resize((h, w), interpolation=InterpolationMode.BILINEAR, antialias=True)(video)
|
169 |
if normalize:
|
170 |
video = video / 127.5 - 1.0
|