Spaces:
Runtime error
Runtime error
New examples for Depth guided T2V0
Browse files- app_depth.py +27 -14
- gradio_utils.py +18 -2
- model.py +1 -1
app_depth.py
CHANGED
@@ -7,20 +7,33 @@ on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
|
7 |
def create_demo(model: Model):
|
8 |
|
9 |
examples = [
|
10 |
-
["__assets__/
|
11 |
-
"
|
12 |
-
["__assets__/
|
13 |
-
"
|
14 |
-
["__assets__/
|
15 |
-
"
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
]
|
25 |
|
26 |
with gr.Blocks() as demo:
|
|
|
7 |
def create_demo(model: Model):
|
8 |
|
9 |
examples = [
|
10 |
+
["__assets__/depth_videos_depth/girl_dancing.mp4",
|
11 |
+
"A stormtrooper, masterpiece, a high-quality, detailed, and professional photo"],
|
12 |
+
["__assets__/depth_videos_depth/girl_dancing.mp4",
|
13 |
+
"Oil painting of a catwoman, masterpiece, a high-quality, detailed, and professional photo"],
|
14 |
+
["__assets__/depth_videos_depth/girl_dancing.mp4",
|
15 |
+
"Oil painting of a girl dancing closed eyes, masterpiece, a high-quality, detailed, and professional photo"],
|
16 |
+
|
17 |
+
["__assets__/depth_videos_depth/woman.mp4",
|
18 |
+
"A robot is dancing in the Sahara desert, detailed, and professional photo"],
|
19 |
+
["__assets__/depth_videos_depth/woman.mp4",
|
20 |
+
"Wonder woman is dancing, a high-quality, detailed, and professional photo"],
|
21 |
+
["__assets__/depth_videos_depth/woman.mp4",
|
22 |
+
"Oil painting of a girl dancing close-up, masterpiece, a high-quality, detailed, and professional photo"],
|
23 |
+
|
24 |
+
["__assets__/depth_videos_depth/man.mp4",
|
25 |
+
"An astronaut is Dancing in space, a high-quality, detailed, and professional photo"],
|
26 |
+
["__assets__/depth_videos_depth/man.mp4",
|
27 |
+
"Iron Man is dancing, a high-quality, detailed, and professional photo"],
|
28 |
+
["__assets__/depth_videos_depth/man.mp4",
|
29 |
+
"Spiderman is Dancing, a high-quality, detailed, and professional photo"],
|
30 |
+
|
31 |
+
["__assets__/depth_videos_depth/halloween.mp4",
|
32 |
+
"Beautiful blonde girl, a high-quality, detailed, and professional photo"],
|
33 |
+
["__assets__/depth_videos_depth/halloween.mp4",
|
34 |
+
"Beautiful brunette girl, a high-quality, detailed, and professional photo"],
|
35 |
+
["__assets__/depth_videos_depth/halloween.mp4",
|
36 |
+
"Beautiful red-haired girl, a high-quality, detailed, and professional photo"],
|
37 |
]
|
38 |
|
39 |
with gr.Blocks() as demo:
|
gradio_utils.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
import os
|
2 |
|
3 |
# App Canny utils
|
4 |
-
|
5 |
-
|
6 |
def edge_path_to_video_path(edge_path):
|
7 |
video_path = edge_path
|
8 |
|
@@ -96,3 +94,21 @@ def logo_name_to_path(name):
|
|
96 |
if name in logo_paths:
|
97 |
return logo_paths[name]
|
98 |
return name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
# App Canny utils
|
|
|
|
|
4 |
def edge_path_to_video_path(edge_path):
|
5 |
video_path = edge_path
|
6 |
|
|
|
94 |
if name in logo_paths:
|
95 |
return logo_paths[name]
|
96 |
return name
|
97 |
+
|
98 |
+
|
99 |
+
# App Depth utils
|
100 |
+
def depth_path_to_video_path(edge_path):
|
101 |
+
video_path = edge_path
|
102 |
+
|
103 |
+
vid_name = edge_path.split("/")[-1]
|
104 |
+
if vid_name == "girl_dancing.mp4":
|
105 |
+
video_path = "__assets__/depth_videos_mp4/girl_dancing.mp4"
|
106 |
+
elif vid_name == "halloween.mp4":
|
107 |
+
video_path = "__assets__/depth_videos_mp4/halloween.mp4"
|
108 |
+
elif vid_name == "man.mp4":
|
109 |
+
video_path = "__assets__/depth_videos_mp4/man.mp4"
|
110 |
+
elif vid_name == "woman.mp4":
|
111 |
+
video_path = "__assets__/depth_videos_mp4/woman.mp4"
|
112 |
+
|
113 |
+
assert os.path.isfile(video_path)
|
114 |
+
return video_path
|
model.py
CHANGED
@@ -211,7 +211,7 @@ class Model:
|
|
211 |
use_cf_attn=True,
|
212 |
save_path=None):
|
213 |
print("Module Depth")
|
214 |
-
video_path = gradio_utils.
|
215 |
if self.model_type != ModelType.ControlNetDepth:
|
216 |
controlnet = ControlNetModel.from_pretrained(
|
217 |
"lllyasviel/sd-controlnet-depth")
|
|
|
211 |
use_cf_attn=True,
|
212 |
save_path=None):
|
213 |
print("Module Depth")
|
214 |
+
video_path = gradio_utils.depth_path_to_video_path(video_path)
|
215 |
if self.model_type != ModelType.ControlNetDepth:
|
216 |
controlnet = ControlNetModel.from_pretrained(
|
217 |
"lllyasviel/sd-controlnet-depth")
|