Text2Video-Zero / model.py
lev1's picture
Back to diffusers 0.14.x
cbea3f9
from enum import Enum
import gc
import numpy as np
import tomesd
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UNet2DConditionModel
from diffusers.schedulers import EulerAncestralDiscreteScheduler, DDIMScheduler
from text_to_video_pipeline import TextToVideoPipeline
import utils
import gradio_utils
import os
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
from einops import rearrange
class ModelType(Enum):
Pix2Pix_Video = 1,
Text2Video = 2,
ControlNetCanny = 3,
ControlNetCannyDB = 4,
ControlNetPose = 5,
ControlNetDepth = 6,
class Model:
def __init__(self, device, dtype, **kwargs):
self.device = device
self.dtype = dtype
self.generator = torch.Generator(device=device)
self.pipe_dict = {
ModelType.Pix2Pix_Video: StableDiffusionInstructPix2PixPipeline,
ModelType.Text2Video: TextToVideoPipeline,
ModelType.ControlNetCanny: StableDiffusionControlNetPipeline,
ModelType.ControlNetCannyDB: StableDiffusionControlNetPipeline,
ModelType.ControlNetPose: StableDiffusionControlNetPipeline,
ModelType.ControlNetDepth: StableDiffusionControlNetPipeline,
}
self.controlnet_attn_proc = utils.CrossFrameAttnProcessor(
unet_chunk_size=2)
self.pix2pix_attn_proc = utils.CrossFrameAttnProcessor(
unet_chunk_size=3)
self.text2video_attn_proc = utils.CrossFrameAttnProcessor(
unet_chunk_size=2)
self.pipe = None
self.model_type = None
self.states = {}
self.model_name = ""
def set_model(self, model_type: ModelType, model_id: str, **kwargs):
if hasattr(self, "pipe") and self.pipe is not None:
del self.pipe
torch.cuda.empty_cache()
gc.collect()
safety_checker = kwargs.pop('safety_checker', None)
self.pipe = self.pipe_dict[model_type].from_pretrained(
model_id, safety_checker=safety_checker, **kwargs).to(self.device).to(self.dtype)
self.model_type = model_type
self.model_name = model_id
def inference_chunk(self, frame_ids, **kwargs):
if not hasattr(self, "pipe") or self.pipe is None:
return
prompt = np.array(kwargs.pop('prompt'))
negative_prompt = np.array(kwargs.pop('negative_prompt', ''))
latents = None
if 'latents' in kwargs:
latents = kwargs.pop('latents')[frame_ids]
if 'image' in kwargs:
kwargs['image'] = kwargs['image'][frame_ids]
if 'video_length' in kwargs:
kwargs['video_length'] = len(frame_ids)
if self.model_type == ModelType.Text2Video:
kwargs["frame_ids"] = frame_ids
return self.pipe(prompt=prompt[frame_ids].tolist(),
negative_prompt=negative_prompt[frame_ids].tolist(),
latents=latents,
generator=self.generator,
**kwargs)
def inference(self, split_to_chunks=False, chunk_size=2, **kwargs):
if not hasattr(self, "pipe") or self.pipe is None:
return
if "merging_ratio" in kwargs:
merging_ratio = kwargs.pop("merging_ratio")
# if merging_ratio > 0:
tomesd.apply_patch(self.pipe, ratio=merging_ratio)
seed = kwargs.pop('seed', 0)
if seed < 0:
seed = self.generator.seed()
kwargs.pop('generator', '')
if 'image' in kwargs:
f = kwargs['image'].shape[0]
else:
f = kwargs['video_length']
assert 'prompt' in kwargs
prompt = [kwargs.pop('prompt')] * f
negative_prompt = [kwargs.pop('negative_prompt', '')] * f
frames_counter = 0
# Processing chunk-by-chunk
if split_to_chunks:
chunk_ids = np.arange(0, f, chunk_size - 1)
result = []
for i in range(len(chunk_ids)):
ch_start = chunk_ids[i]
ch_end = f if i == len(chunk_ids) - 1 else chunk_ids[i + 1]
frame_ids = [0] + list(range(ch_start, ch_end))
self.generator.manual_seed(seed)
print(f'Processing chunk {i + 1} / {len(chunk_ids)}')
result.append(self.inference_chunk(frame_ids=frame_ids,
prompt=prompt,
negative_prompt=negative_prompt,
**kwargs).images[1:])
frames_counter += len(chunk_ids)-1
if on_huggingspace and frames_counter >= 80:
break
result = np.concatenate(result)
return result
else:
self.generator.manual_seed(seed)
return self.pipe(prompt=prompt, negative_prompt=negative_prompt, generator=self.generator, **kwargs).images
def process_controlnet_canny(self,
video_path,
prompt,
chunk_size=2,
watermark='Picsart AI Research',
merging_ratio=0.0,
num_inference_steps=20,
controlnet_conditioning_scale=1.0,
guidance_scale=9.0,
seed=42,
eta=0.0,
low_threshold=100,
high_threshold=200,
resolution=512,
use_cf_attn=True,
save_path=None):
print("Module Canny")
video_path = gradio_utils.edge_path_to_video_path(video_path)
if self.model_type != ModelType.ControlNetCanny:
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny")
self.set_model(ModelType.ControlNetCanny,
model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet)
self.pipe.scheduler = DDIMScheduler.from_config(
self.pipe.scheduler.config)
if use_cf_attn:
self.pipe.unet.set_attn_processor(
processor=self.controlnet_attn_proc)
self.pipe.controlnet.set_attn_processor(
processor=self.controlnet_attn_proc)
added_prompt = 'best quality, extremely detailed'
negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
video, fps = utils.prepare_video(
video_path, resolution, self.device, self.dtype, False)
control = utils.pre_process_canny(
video, low_threshold, high_threshold).to(self.device).to(self.dtype)
# canny_to_save = list(rearrange(control, 'f c w h -> f w h c').cpu().detach().numpy())
# _ = utils.create_video(canny_to_save, 4, path="ddxk.mp4", watermark=None)
f, _, h, w = video.shape
self.generator.manual_seed(seed)
latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype,
device=self.device, generator=self.generator)
latents = latents.repeat(f, 1, 1, 1)
result = self.inference(image=control,
prompt=prompt + ', ' + added_prompt,
height=h,
width=w,
negative_prompt=negative_prompts,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
eta=eta,
latents=latents,
seed=seed,
output_type='numpy',
split_to_chunks=True,
chunk_size=chunk_size,
merging_ratio=merging_ratio,
)
return utils.create_video(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark))
def process_controlnet_depth(self,
video_path,
prompt,
chunk_size=2,
watermark='Picsart AI Research',
merging_ratio=0.0,
num_inference_steps=20,
controlnet_conditioning_scale=1.0,
guidance_scale=9.0,
seed=42,
eta=0.0,
resolution=512,
use_cf_attn=True,
save_path=None):
print("Module Depth")
video_path = gradio_utils.depth_path_to_video_path(video_path)
if self.model_type != ModelType.ControlNetDepth:
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-depth")
self.set_model(ModelType.ControlNetDepth,
model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet)
self.pipe.scheduler = DDIMScheduler.from_config(
self.pipe.scheduler.config)
if use_cf_attn:
self.pipe.unet.set_attn_processor(
processor=self.controlnet_attn_proc)
self.pipe.controlnet.set_attn_processor(
processor=self.controlnet_attn_proc)
added_prompt = 'best quality, extremely detailed'
negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
video, fps = utils.prepare_video(
video_path, resolution, self.device, self.dtype, False)
control = utils.pre_process_depth(
video).to(self.device).to(self.dtype)
# depth_map_to_save = list(rearrange(control, 'f c w h -> f w h c').cpu().detach().numpy())
# _ = utils.create_video(depth_map_to_save, 4, path="ddxk.mp4", watermark=None)
f, _, h, w = video.shape
self.generator.manual_seed(seed)
latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype,
device=self.device, generator=self.generator)
latents = latents.repeat(f, 1, 1, 1)
result = self.inference(image=control,
prompt=prompt + ', ' + added_prompt,
height=h,
width=w,
negative_prompt=negative_prompts,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
eta=eta,
latents=latents,
seed=seed,
output_type='numpy',
split_to_chunks=True,
chunk_size=chunk_size,
merging_ratio=merging_ratio,
)
return utils.create_video(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark))
def process_controlnet_pose(self,
video_path,
prompt,
chunk_size=2,
watermark='Picsart AI Research',
merging_ratio=0.0,
num_inference_steps=20,
controlnet_conditioning_scale=1.0,
guidance_scale=9.0,
seed=42,
eta=0.0,
resolution=512,
use_cf_attn=True,
save_path=None):
print("Module Pose")
video_path = gradio_utils.motion_to_video_path(video_path)
if self.model_type != ModelType.ControlNetPose:
controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-openpose")
self.set_model(ModelType.ControlNetPose,
model_id="runwayml/stable-diffusion-v1-5", controlnet=controlnet)
self.pipe.scheduler = DDIMScheduler.from_config(
self.pipe.scheduler.config)
if use_cf_attn:
self.pipe.unet.set_attn_processor(
processor=self.controlnet_attn_proc)
self.pipe.controlnet.set_attn_processor(
processor=self.controlnet_attn_proc)
video_path = gradio_utils.motion_to_video_path(
video_path) if 'Motion' in video_path else video_path
added_prompt = 'best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth'
negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic'
video, fps = utils.prepare_video(
video_path, resolution, self.device, self.dtype, False, output_fps=4)
control = utils.pre_process_pose(
video, apply_pose_detect=False).to(self.device).to(self.dtype)
f, _, h, w = video.shape
self.generator.manual_seed(seed)
latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype,
device=self.device, generator=self.generator)
latents = latents.repeat(f, 1, 1, 1)
result = self.inference(image=control,
prompt=prompt + ', ' + added_prompt,
height=h,
width=w,
negative_prompt=negative_prompts,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
eta=eta,
latents=latents,
seed=seed,
output_type='numpy',
split_to_chunks=True,
chunk_size=chunk_size,
merging_ratio=merging_ratio,
)
return utils.create_gif(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark))
def process_controlnet_canny_db(self,
db_path,
video_path,
prompt,
chunk_size=2,
watermark='Picsart AI Research',
merging_ratio=0.0,
num_inference_steps=20,
controlnet_conditioning_scale=1.0,
guidance_scale=9.0,
seed=42,
eta=0.0,
low_threshold=100,
high_threshold=200,
resolution=512,
use_cf_attn=True,
save_path=None):
print("Module Canny_DB")
db_path = gradio_utils.get_model_from_db_selection(db_path)
video_path = gradio_utils.get_video_from_canny_selection(video_path)
# Load db and controlnet weights
if 'db_path' not in self.states or db_path != self.states['db_path']:
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny")
self.set_model(ModelType.ControlNetCannyDB,
model_id=db_path, controlnet=controlnet)
self.pipe.scheduler = DDIMScheduler.from_config(
self.pipe.scheduler.config)
self.states['db_path'] = db_path
if use_cf_attn:
self.pipe.unet.set_attn_processor(
processor=self.controlnet_attn_proc)
self.pipe.controlnet.set_attn_processor(
processor=self.controlnet_attn_proc)
added_prompt = 'best quality, extremely detailed'
negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
video, fps = utils.prepare_video(
video_path, resolution, self.device, self.dtype, False)
control = utils.pre_process_canny(
video, low_threshold, high_threshold).to(self.device).to(self.dtype)
f, _, h, w = video.shape
self.generator.manual_seed(seed)
latents = torch.randn((1, 4, h//8, w//8), dtype=self.dtype,
device=self.device, generator=self.generator)
latents = latents.repeat(f, 1, 1, 1)
result = self.inference(image=control,
prompt=prompt + ', ' + added_prompt,
height=h,
width=w,
negative_prompt=negative_prompts,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
eta=eta,
latents=latents,
seed=seed,
output_type='numpy',
split_to_chunks=True,
chunk_size=chunk_size,
merging_ratio=merging_ratio,
)
return utils.create_gif(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark))
def process_pix2pix(self,
video,
prompt,
resolution=512,
seed=0,
image_guidance_scale=1.0,
start_t=0,
end_t=-1,
out_fps=-1,
chunk_size=2,
watermark='Picsart AI Research',
merging_ratio=0.0,
use_cf_attn=True,
save_path=None,):
print("Module Pix2Pix")
if self.model_type != ModelType.Pix2Pix_Video:
self.set_model(ModelType.Pix2Pix_Video,
model_id="timbrooks/instruct-pix2pix")
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
self.pipe.scheduler.config)
if use_cf_attn:
self.pipe.unet.set_attn_processor(
processor=self.pix2pix_attn_proc)
video, fps = utils.prepare_video(
video, resolution, self.device, self.dtype, True, start_t, end_t, out_fps)
self.generator.manual_seed(seed)
result = self.inference(image=video,
prompt=prompt,
seed=seed,
output_type='numpy',
num_inference_steps=50,
image_guidance_scale=image_guidance_scale,
split_to_chunks=True,
chunk_size=chunk_size,
merging_ratio=merging_ratio
)
return utils.create_video(result, fps, path=save_path, watermark=gradio_utils.logo_name_to_path(watermark))
def process_text2video(self,
prompt,
model_name="dreamlike-art/dreamlike-photoreal-2.0",
motion_field_strength_x=12,
motion_field_strength_y=12,
t0=44,
t1=47,
n_prompt="",
chunk_size=2,
video_length=8,
watermark='Picsart AI Research',
merging_ratio=0.0,
seed=0,
resolution=512,
fps=2,
use_cf_attn=True,
use_motion_field=True,
smooth_bg=False,
smooth_bg_strength=0.4,
path=None):
print("Module Text2Video")
if self.model_type != ModelType.Text2Video or model_name != self.model_name:
print("Model update")
unet = UNet2DConditionModel.from_pretrained(
model_name, subfolder="unet")
self.set_model(ModelType.Text2Video,
model_id=model_name, unet=unet)
self.pipe.scheduler = DDIMScheduler.from_config(
self.pipe.scheduler.config)
if use_cf_attn:
self.pipe.unet.set_attn_processor(
processor=self.text2video_attn_proc)
self.generator.manual_seed(seed)
added_prompt = "high quality, HD, 8K, trending on artstation, high focus, dramatic lighting"
negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic'
prompt = prompt.rstrip()
if len(prompt) > 0 and (prompt[-1] == "," or prompt[-1] == "."):
prompt = prompt.rstrip()[:-1]
prompt = prompt.rstrip()
prompt = prompt + ", "+added_prompt
if len(n_prompt) > 0:
negative_prompt = n_prompt
else:
negative_prompt = None
result = self.inference(prompt=prompt,
video_length=video_length,
height=resolution,
width=resolution,
num_inference_steps=50,
guidance_scale=7.5,
guidance_stop_step=1.0,
t0=t0,
t1=t1,
motion_field_strength_x=motion_field_strength_x,
motion_field_strength_y=motion_field_strength_y,
use_motion_field=use_motion_field,
smooth_bg=smooth_bg,
smooth_bg_strength=smooth_bg_strength,
seed=seed,
output_type='numpy',
negative_prompt=negative_prompt,
merging_ratio=merging_ratio,
split_to_chunks=True,
chunk_size=chunk_size,
)
return utils.create_video(result, fps, path=path, watermark=gradio_utils.logo_name_to_path(watermark))