eliphatfs commited on
Commit
b9f9a14
1 Parent(s): ba37554

Retrieval filters.

Browse files
Files changed (1) hide show
  1. app.py +27 -3
app.py CHANGED
@@ -230,11 +230,33 @@ def retrieval_results(results):
230
  st.markdown(f"[{quote_name}]({ext_link})")
231
 
232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
  def demo_retrieval():
234
  with tab_text:
235
  with st.form("rtextform"):
236
  k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext')
237
  text = st.text_input("Input Text", key="inputrtext")
 
238
  if st.form_submit_button("Run with Text") or auto_submit("rtextauto"):
239
  prog.progress(0.49, "Computing Embeddings")
240
  device = clip_model.device
@@ -243,7 +265,7 @@ def demo_retrieval():
243
  ).to(device)
244
  enc = clip_model.get_text_features(**tn).float().cpu()
245
  prog.progress(0.7, "Running Retrieval")
246
- retrieval_results(retrieval.retrieve(enc, k))
247
  prog.progress(1.0, "Idle")
248
  picked_sample = st.selectbox("Examples", ["Select..."] + samples_index.retrieval_texts)
249
  text_last_example = st.session_state.get('text_last_example', None)
@@ -259,6 +281,7 @@ def demo_retrieval():
259
  with st.form("rimgform"):
260
  k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
261
  pic = st.file_uploader("Upload an Image", key='rimageinput')
 
262
  if st.form_submit_button("Run with Image"):
263
  submit = True
264
  results_container = st.container()
@@ -274,13 +297,14 @@ def demo_retrieval():
274
  tn = clip_prep(images=[img], return_tensors="pt").to(device)
275
  enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
276
  prog.progress(0.7, "Running Retrieval")
277
- retrieval_results(retrieval.retrieve(enc, k))
278
  prog.progress(1.0, "Idle")
279
 
280
  with tab_pc:
281
  with st.form("rpcform"):
282
  k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc')
283
  load_data = misc_utils.input_3d_shape('retpc')
 
284
  if st.form_submit_button("Run with Shape") or auto_submit('rpcauto'):
285
  pc = load_data(prog)
286
  col2 = misc_utils.render_pc(pc)
@@ -288,7 +312,7 @@ def demo_retrieval():
288
  ref_dev = next(model_g14.parameters()).device
289
  enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
290
  prog.progress(0.7, "Running Retrieval")
291
- retrieval_results(retrieval.retrieve(enc, k))
292
  prog.progress(1.0, "Idle")
293
  if image_examples(samples_index.pret, 3):
294
  queue_auto_submit("rpcauto")
 
230
  st.markdown(f"[{quote_name}]({ext_link})")
231
 
232
 
233
+ def retrieval_filter_expand(key):
234
+ with st.expander("Filters"):
235
+ sim_th = st.slider("Similarity Threshold", 0.05, 0.5, 0.1, key=key + 'rtsimth')
236
+ tag = st.text_input("Has Tag", "", key=key + 'rthastag')
237
+ col1, col2 = st.columns(2)
238
+ face_min = int(col1.text_input("Face Count Min", "0", key=key + 'rtfcmin'))
239
+ face_max = int(col2.text_input("Face Count Max", "34985808", key=key + 'rtfcmax'))
240
+ col1, col2 = st.columns(2)
241
+ anim_min = int(col1.text_input("Animation Count Min", "0", key=key + 'rtacmin'))
242
+ anim_max = int(col2.text_input("Animation Count Max", "563", key=key + 'rtacmax'))
243
+ tag_n = not bool(tag.strip())
244
+ anim_n = not (anim_min > 0 or anim_max < 563)
245
+ face_n = not (face_min > 0 or face_max < 34985808)
246
+ filter_fn = lambda x: (
247
+ (anim_n or anim_min <= x['anims'] <= anim_max)
248
+ and (face_n or face_min <= x['faces'] <= face_max)
249
+ and (tag_n or tag in x['tags'])
250
+ )
251
+ return sim_th, filter_fn
252
+
253
+
254
  def demo_retrieval():
255
  with tab_text:
256
  with st.form("rtextform"):
257
  k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext')
258
  text = st.text_input("Input Text", key="inputrtext")
259
+ sim_th, filter_fn = retrieval_filter_expand('text')
260
  if st.form_submit_button("Run with Text") or auto_submit("rtextauto"):
261
  prog.progress(0.49, "Computing Embeddings")
262
  device = clip_model.device
 
265
  ).to(device)
266
  enc = clip_model.get_text_features(**tn).float().cpu()
267
  prog.progress(0.7, "Running Retrieval")
268
+ retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
269
  prog.progress(1.0, "Idle")
270
  picked_sample = st.selectbox("Examples", ["Select..."] + samples_index.retrieval_texts)
271
  text_last_example = st.session_state.get('text_last_example', None)
 
281
  with st.form("rimgform"):
282
  k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
283
  pic = st.file_uploader("Upload an Image", key='rimageinput')
284
+ sim_th, filter_fn = retrieval_filter_expand('image')
285
  if st.form_submit_button("Run with Image"):
286
  submit = True
287
  results_container = st.container()
 
297
  tn = clip_prep(images=[img], return_tensors="pt").to(device)
298
  enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
299
  prog.progress(0.7, "Running Retrieval")
300
+ retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
301
  prog.progress(1.0, "Idle")
302
 
303
  with tab_pc:
304
  with st.form("rpcform"):
305
  k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc')
306
  load_data = misc_utils.input_3d_shape('retpc')
307
+ sim_th, filter_fn = retrieval_filter_expand('pc')
308
  if st.form_submit_button("Run with Shape") or auto_submit('rpcauto'):
309
  pc = load_data(prog)
310
  col2 = misc_utils.render_pc(pc)
 
312
  ref_dev = next(model_g14.parameters()).device
313
  enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
314
  prog.progress(0.7, "Running Retrieval")
315
+ retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
316
  prog.progress(1.0, "Idle")
317
  if image_examples(samples_index.pret, 3):
318
  queue_auto_submit("rpcauto")