File size: 15,131 Bytes
bfd34e9
f1cc496
 
bfd34e9
 
 
 
 
 
 
 
f1cc496
 
 
 
 
 
bfd34e9
 
f1cc496
 
 
 
bfd34e9
f1cc496
bfd34e9
 
 
 
 
 
f1cc496
bfd34e9
f1cc496
 
 
 
 
 
 
 
bfd34e9
29ac50c
bfd34e9
fd3e2fa
 
 
 
 
 
 
 
bfd34e9
 
 
 
 
 
 
 
073105a
bfd34e9
 
 
 
 
f1cc496
bfd34e9
f1cc496
 
 
bfd34e9
da1e12f
 
bfd34e9
f1cc496
 
6510c77
f1cc496
 
 
bfd34e9
f1cc496
 
 
 
6510c77
f1cc496
bfd34e9
 
1df97f6
 
 
 
f1cc496
1df97f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f7e06
1df97f6
f1cc496
1df97f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1cc496
 
 
736e88e
bfd34e9
f1cc496
bfd34e9
f1cc496
bfd34e9
f1cc496
736e88e
bfd34e9
f1cc496
 
 
 
bfd34e9
 
 
 
073105a
 
bfd34e9
 
 
736e88e
bfd34e9
 
 
 
736e88e
 
f1cc496
736e88e
 
 
 
 
 
 
 
 
 
 
bfd34e9
 
736e88e
 
 
 
 
 
bfd34e9
1df97f6
bfd34e9
1df97f6
073105a
1df97f6
 
bfd34e9
 
 
1df97f6
f1cc496
736e88e
1df97f6
 
 
f1cc496
1df97f6
bfd34e9
 
 
 
1df97f6
bfd34e9
 
1df97f6
 
736e88e
 
 
1df97f6
736e88e
 
f1cc496
736e88e
 
 
 
 
 
 
1df97f6
 
bfd34e9
 
f1cc496
bfd34e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08504da
bfd34e9
 
 
 
 
f1cc496
bfd34e9
 
 
 
 
 
 
 
08504da
bfd34e9
 
 
 
 
 
 
 
 
073105a
 
 
 
 
 
 
 
 
bfd34e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073105a
 
 
 
bfd34e9
 
1df97f6
bfd34e9
 
 
f1cc496
bfd34e9
 
f1cc496
bfd34e9
 
073105a
 
bfd34e9
 
 
 
 
 
1df97f6
 
bfd34e9
1df97f6
bfd34e9
 
 
 
 
 
 
 
1df97f6
bfd34e9
 
1df97f6
bfd34e9
1df97f6
bfd34e9
 
a973c78
f1cc496
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os
import sys
from pathlib import Path
from collections import OrderedDict

import gradio as gr
import shutil
import uuid
import torch
from PIL import Image

demo_path = Path(__file__).resolve().parent
root_path = demo_path
sys.path.append(str(root_path))
from src import models
from src.methods import rasg, sd, sr
from src.utils import IImage, poisson_blend, image_from_url_text


TMP_DIR = root_path / 'gradio_tmp'
if TMP_DIR.exists():
    shutil.rmtree(str(TMP_DIR))
TMP_DIR.mkdir(exist_ok=True, parents=True)

os.environ['GRADIO_TEMP_DIR'] = str(TMP_DIR)

on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"

negative_prompt_str = "text, bad anatomy, bad proportions, blurry, cropped, deformed, disfigured, duplicate, error, extra limbs, gross proportions, jpeg artifacts, long neck, low quality, lowres, malformed, morbid, mutated, mutilated, out of frame, ugly, worst quality"
positive_prompt_str = "Full HD, 4K, high quality, high resolution"

examples_path = root_path / '__assets__/demo/examples'
example_inputs = [
    [f'{examples_path}/images_1024/a40.jpg', f'{examples_path}/images_2048/a40.jpg', 'medieval castle'],
    [f'{examples_path}/images_1024/a4.jpg', f'{examples_path}/images_2048/a4.jpg', 'parrot'],
    [f'{examples_path}/images_1024/a65.jpg', f'{examples_path}/images_2048/a65.jpg', 'hoodie'],
    [f'{examples_path}/images_1024/a54.jpg', f'{examples_path}/images_2048/a54.jpg', 'salad'],
    [f'{examples_path}/images_1024/a51.jpg', f'{examples_path}/images_2048/a51.jpg', 'space helmet'],
    [f'{examples_path}/images_1024/a46.jpg', f'{examples_path}/images_2048/a46.jpg', 'stack of books'],
    [f'{examples_path}/images_1024/a19.jpg', f'{examples_path}/images_2048/a19.jpg', 'antique greek vase'],
    [f'{examples_path}/images_1024/a2.jpg', f'{examples_path}/images_2048/a2.jpg', 'sunglasses'],
]

thumbnails = [
    'https://lh3.googleusercontent.com/pw/ABLVV87bkFc_SRKrbXuk5BTp18dETNm18MLbjoJo6JvwbIkYtjZXrjU_H1dCJIP799OJjHTZmo19mYVyMCC1RLmwqzoZrgwQzfB-SCtxLa83IbXBQ23xzmKoZgsRlPztxNJD6gmXzFyatdLRzDxHIusBQLUz=w3580-h1150-s-no-gm',
    'https://lh3.googleusercontent.com/pw/ABLVV85RWtrpTf1tMp2p3q37eg5DlFp5znifALK_JTjvxJua8UYMjytVoEy2GUW2cLXgBvQyYKg7GvrWXQ5hkdAsyih5Rf4rFnDq-JoiQYhVZHStCZLKxmeAlQna5ZwMPVTKG1TK63DH_OdK58gvSjWtF2ww=w3580-h1152-s-no-gm',
    'https://lh3.googleusercontent.com/pw/ABLVV84dkaU6SQs9fyDjajpk1X9JkYp_zQBEnPVL67oi11_05U6-Ys5ydQpuny8GBQCMyVbFKxJ5unn9w__gmP9K0cKQ4_IVoT7Hvfmya71klDqSI7vu9Iy_5P2Il5-0giJFpumtffBA3kryn1xtJdR4vSA0=w2924-h1858-s-no-gm',
    'https://lh3.googleusercontent.com/pw/ABLVV853ZyjvS4LvcPpVMY9BWz-232omt3-hgRiGcky_3ojE6WLKgtsrftsg1jSrUm2ccT_UOa279CulZy6fdnH_Xg1SunyRBxaRjOK0uxAkUFwb60rR1S4hI2MmhLV7KCi3tw1A-oiGi0f9JINyade-322A=w2622-h1858-s-no-gm',
    'https://lh3.googleusercontent.com/pw/ABLVV86AJGUVGjb0i6CPg8zlJlWObNY0xdOzM1x5Bq9gKhP-ZWre5aaexRJDxQUO2gmJtRIyohD88FJDG_aVX2G5M0QOyGRWlZmx7tOVXLh-Kbesobxo9MfD-wqk9Ts9O8NUGtIwkWzo9SEs2opKdu83gB9F=w2528-h1858-s-no-gm',
    'https://lh3.googleusercontent.com/pw/ABLVV87MplTciS7z-4i-eY3B3L0YhaK8UEQ3pTQD6W6uYVGR4hPD9u1WGEGyfg5ddqU-Bx2BrKskDhwxzF746cRhgFU5aPtbYA_-O7KfqXe9IsMxYCgUKxEHBm2ncqy64V-w-N8XOFgUMkAQqcuuNZ8Xapqp=w3580-h1186-s-no-gm',
    'https://lh3.googleusercontent.com/pw/ABLVV877Esi6l2Kuw3akH5QBlmDAbWydZDZEEJqlZ_N-X7g33NQZU8nv_UKdAVETS7q23byTuldIAhW-q99zCycFB8Yfc-5e_WPNIM9icU0p3gd6DUVZR233ZNUtLca384MYGIhMGud9Y_Xed1I3PpiMhrpG=w2846-h1858-s-no-gm',
    'https://lh3.googleusercontent.com/pw/ABLVV85hMQbSB6fCokdyut4ke7xTUqjERhuYygnj7T8IIA1k48e9GkaowDywPZzi5QJzZfj7wU3bgBHzjxop19qK1zOi5XDrjfXkn5bwj4MxicHa3TG-Rc-V-c1uyZVUyviyUlkGZ62FxuVROw2x0aGJIcr0=w3580-h1382-s-no-gm'
]

example_previews = [
    [thumbnails[0], 'Prompt: medieval castle'],
    [thumbnails[1], 'Prompt: parrot'],
    [thumbnails[2], 'Prompt: hoodie'],
    [thumbnails[3], 'Prompt: salad'],
    [thumbnails[4], 'Prompt: space helmet'],
    [thumbnails[5], 'Prompt: stack of books'],
    [thumbnails[6], 'Prompt: antique greek vase'],
    [thumbnails[7], 'Prompt: sunglasses'],
]

# Load models
models.pre_download_inpainting_models()
inpainting_models = OrderedDict([
    ("Dreamshaper Inpainting V8", 'ds8_inp'),
    ("Stable-Inpainting 2.0", 'sd2_inp'),
    ("Stable-Inpainting 1.5", 'sd15_inp')
])
sr_model = models.sd2_sr.load_model(device='cuda:1')
sam_predictor = models.sam.load_model(device='cuda:0')

inp_model_name = list(inpainting_models.keys())[0]
inp_model = models.load_inpainting_model(
    inpainting_models[inp_model_name], device='cuda:0', cache=True)


def set_model_from_name(new_inp_model_name):
    global inp_model
    global inp_model_name
    if new_inp_model_name != inp_model_name:
        print (f"Activating Inpaintng Model: {new_inp_model_name}")
        inp_model = models.load_inpainting_model(
            inpainting_models[new_inp_model_name], device='cuda:0', cache=True)
        inp_model_name = new_inp_model_name


def save_user_session(hr_image, hr_mask, lr_results, prompt, session_id=None):
    if session_id == '':
        session_id = str(uuid.uuid4())
    
    session_dir = TMP_DIR / session_id
    session_dir.mkdir(exist_ok=True, parents=True)
    
    hr_image.save(session_dir / 'hr_image.png')
    hr_mask.save(session_dir / 'hr_mask.png')

    lr_results_dir = session_dir / 'lr_results'
    if lr_results_dir.exists():
        shutil.rmtree(lr_results_dir)
    lr_results_dir.mkdir(parents=True)
    for i, lr_result in enumerate(lr_results):
        lr_result.save(lr_results_dir / f'{i}.png')

    with open(session_dir / 'prompt.txt', 'w') as f:
        f.write(prompt)
    
    return session_id


def recover_user_session(session_id):
    if session_id == '':
        return None, None, [], ''
    
    session_dir = TMP_DIR / session_id
    lr_results_dir = session_dir / 'lr_results'

    hr_image = Image.open(session_dir / 'hr_image.png')
    hr_mask = Image.open(session_dir / 'hr_mask.png')
  
    lr_result_paths = list(lr_results_dir.glob('*.png'))
    gallery = []
    for lr_result_path in sorted(lr_result_paths):
        gallery.append(Image.open(lr_result_path))

    with open(session_dir / 'prompt.txt', "r") as f:
        prompt = f.read()

    return hr_image, hr_mask, gallery, prompt


def inpainting_run(model_name, use_rasg, use_painta, prompt, imageMask,
    hr_image, seed, eta, negative_prompt, positive_prompt, ddim_steps,
    guidance_scale=7.5, batch_size=1, session_id=''
):
    torch.cuda.empty_cache()
    set_model_from_name(model_name)

    method = ['default']
    if use_painta: method.append('painta')
    if use_rasg: method.append('rasg')
    method = '-'.join(method)

    if use_rasg:
        inpainting_f = rasg.run
    else:
        inpainting_f = sd.run

    seed = int(seed)
    batch_size = max(1, min(int(batch_size), 4))

    image = IImage(hr_image).resize(512)
    mask = IImage(imageMask['mask']).rgb().resize(512)

    method = ['default']
    if use_painta: method.append('painta')
    method = '-'.join(method)

    inpainted_images = []
    blended_images = []
    for i in range(batch_size):
        seed = seed + i * 1000

        inpainted_image = inpainting_f(
            ddim=inp_model,
            method=method,
            prompt=prompt,
            image=image,
            mask=mask,
            seed=seed,
            eta=eta,
            negative_prompt=negative_prompt,
            positive_prompt=positive_prompt,
            num_steps=ddim_steps,
            guidance_scale=guidance_scale
        ).crop(image.size)

        blended_image = poisson_blend(
            orig_img=image.data[0],
            fake_img=inpainted_image.data[0],
            mask=mask.data[0],
            dilation=12
        )
        blended_images.append(blended_image)
        inpainted_images.append(inpainted_image.pil())

    session_id = save_user_session(
        hr_image, imageMask['mask'], inpainted_images, prompt, session_id=session_id)
    
    return blended_images, session_id


def upscale_run(
    ddim_steps, seed, use_sam_mask, session_id, img_index,
    negative_prompt='', positive_prompt='high resolution professional photo'
):
    hr_image, hr_mask, gallery, prompt = recover_user_session(session_id)

    if len(gallery) == 0:
        return Image.open(root_path / '__assets__/sr_info.png')

    torch.cuda.empty_cache()

    seed = int(seed)
    img_index = int(img_index)

    img_index = 0 if img_index < 0 else img_index
    img_index = len(gallery) - 1 if img_index >= len(gallery) else img_index
    inpainted_image = gallery[img_index if img_index >= 0 else 0]

    output_image = sr.run(
        sr_model,
        sam_predictor,
        inpainted_image,
        hr_image,
        hr_mask,
        prompt=f'{prompt}, {positive_prompt}',
        noise_level=20,
        blend_trick=True,
        blend_output=True,
        negative_prompt=negative_prompt, 
        seed=seed,
        use_sam_mask=use_sam_mask
    )

    return output_image


with gr.Blocks(css=demo_path / 'style.css') as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
        <h1 style="font-weight: 900; font-size: 3rem; margin-bottom: 0.5rem">
            πŸ§‘β€πŸŽ¨ HD-Painter Demo
        </h1>
        <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
        Hayk Manukyan<sup>1*</sup>, Andranik Sargsyan<sup>1*</sup>, Barsegh Atanyan<sup>1</sup>, Zhangyang Wang<sup>1,2</sup>, Shant Navasardyan<sup>1</sup>
        and <a href="https://www.humphreyshi.com/home">Humphrey Shi</a><sup>1,3</sup>
        </h2>
        <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
        <sup>1</sup>Picsart AI Resarch (PAIR), <sup>2</sup>UT Austin, <sup>3</sup>Georgia Tech
        </h2>
        <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
        [<a href="https://arxiv.org/abs/2312.14091" style="color:blue;">arXiv</a>] 
        [<a href="https://github.com/Picsart-AI-Research/HD-Painter" style="color:blue;">GitHub</a>]
        </h2>
        <h2 style="font-weight: 450; font-size: 1rem; margin: 0.7rem auto; max-width: 1000px">
        <b>HD-Painter</b> enables prompt-faithfull and high resolution (up to 2k) image inpainting upon any diffusion-based image inpainting method.
        </h2>
        </div>
        """)

    if on_huggingspace:
        gr.HTML("""
        <p>For faster inference without waiting in queue, you may duplicate the space and upgrade to the suggested GPU in settings.
        <br/>
        <a href="https://huggingface.co/spaces/PAIR/HD-Painter?duplicate=true">
        <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
        </p>""")

    with open(demo_path / 'script.js', 'r') as f:
        js_str = f.read()

    demo.load(_js=js_str)

    with gr.Row():
        with gr.Column():
            model_picker = gr.Dropdown(
                list(inpainting_models.keys()),
                value=list(inpainting_models.keys())[0],
                label = "Please select a model!",
            )
        with gr.Column():
            use_painta = gr.Checkbox(value = True, label = "Use PAIntA")
            use_rasg = gr.Checkbox(value = True, label = "Use RASG")

    prompt = gr.Textbox(label = "Inpainting Prompt")
    with gr.Row():
        with gr.Column():
            imageMask = gr.ImageMask(label = "Input Image", brush_color='#ff0000', elem_id="inputmask", type="pil")
            hr_image = gr.Image(visible=False, type="pil")
            hr_image.change(fn=None, _js="function() {setTimeout(imageMaskResize, 200);}", inputs=[], outputs=[])
            imageMask.upload(
                fn=None,
                _js="async function (a) {hr_img = await resize_b64_img(a['image'], 2048); dp_img = await resize_b64_img(hr_img, 1024); return [hr_img, {image: dp_img, mask: null}]}",
                inputs=[imageMask],
                outputs=[hr_image, imageMask],
            )
            with gr.Row():
                inpaint_btn = gr.Button("Inpaint", scale = 0)
   
            with gr.Accordion('Advanced options', open=False):
                guidance_scale = gr.Slider(minimum = 0, maximum = 30, value = 7.5, label = "Guidance Scale")
                eta = gr.Slider(minimum = 0, maximum = 1, value = 0.1, label = "eta")
                ddim_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step =  1, label = 'Number of diffusion steps')
                with gr.Row():
                    seed = gr.Number(value = 49123, label = "Seed")
                    batch_size = gr.Number(value = 1, label = "Batch size", minimum=1, maximum=4) 
                negative_prompt = gr.Textbox(value=negative_prompt_str, label = "Negative prompt", lines=3)
                positive_prompt = gr.Textbox(value=positive_prompt_str, label = "Positive prompt", lines=1)

        with gr.Column():
            with gr.Row():
                output_gallery = gr.Gallery(
                    [],
                    columns = 4,
                    preview = True,
                    allow_preview = True,
                    object_fit='scale-down',
                    elem_id='outputgallery'
                )
            with gr.Row():
                upscale_btn = gr.Button("Send to Inpainting-Specialized Super-Resolution (x4)", scale = 1)
            with gr.Row():
                use_sam_mask = gr.Checkbox(value = False, label = "Use SAM mask for background preservation (for SR only, experimental feature)")
            with gr.Row():
                hires_image = gr.Image(label = "Hi-res Image")
    
    label = gr.Markdown("## High-Resolution Generation Samples (2048px large side)")
    
    with gr.Column():
        example_container = gr.Gallery(
            example_previews,
            columns = 4,
            preview = True,
            allow_preview = True,
            object_fit='scale-down'
        )

        gr.Examples(
            [example_inputs[i] + [[example_previews[i]]]
                for i in range(len(example_previews))],
            [imageMask, hr_image, prompt, example_container],
            elem_id='examples'
        )

    session_id = gr.Textbox(value='', visible=False)
    html_info = gr.HTML(elem_id=f'html_info', elem_classes="infotext")

    inpaint_btn.click(
        fn=inpainting_run, 
        inputs=[
            model_picker,
            use_rasg,
            use_painta,
            prompt,
            imageMask,
            hr_image,
            seed,
            eta,
            negative_prompt,
            positive_prompt,
            ddim_steps,
            guidance_scale,
            batch_size,
            session_id
        ], 
        outputs=[output_gallery, session_id], 
        api_name="inpaint"
    )
    upscale_btn.click(
        fn=upscale_run, 
        inputs=[
            ddim_steps,
            seed,
            use_sam_mask,
            session_id,
            html_info
        ],
        outputs=[hires_image], 
        api_name="upscale",
        _js="function(a, b, c, d, e){ return [a, b, c, d, selected_gallery_index()] }",
    )

demo.queue(max_size=20)
demo.launch(share=True, allowed_paths=[str(TMP_DIR)])