Spaces:
Runtime error
Runtime error
File size: 9,853 Bytes
621f0bd 10fa1e9 d0ebf51 2b50e79 d0ebf51 2b50e79 d0ebf51 10fa1e9 4b30813 10fa1e9 2b50e79 d0ebf51 10fa1e9 d0ebf51 10fa1e9 d0ebf51 2b50e79 d0ebf51 2b50e79 d0ebf51 10fa1e9 d0ebf51 2b50e79 d0ebf51 2b50e79 d0ebf51 2b50e79 d0ebf51 10fa1e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import gradio as gr
import pandas as pd
from Prediction import *
import os
from datetime import datetime
import re
import json
import hashlib
persistent_path = "/data"
os.environ['HF_HOME'] = os.path.join(persistent_path, ".huggingface")
user_input_path = os.path.join(persistent_path, 'user.jsonl')
secret = "2fc9ff032e027e8f23bb9fb693234899"
def get_md5(s):
md = hashlib.md5()
md.update(s.encode('utf-8'))
return md.hexdigest()
examples = []
if os.path.exists("assets/examples.txt"):
with open("assets/examples.txt", "r", encoding="utf8") as file:
for sentence in file:
sentence = sentence.strip()
examples.append(sentence)
else:
examples = [
"Games of the imagination teach us actions have consequences in a realm that can be reset.",
"But New Jersey farmers are retiring and all over the state, development continues to push out dwindling farmland.",
"He also is the Head Designer of The Design Trust so-to-speak, besides his regular job ..."
]
device = torch.device('cpu')
tokenizer = BertTokenizer.from_pretrained("Oliver12315/Brand_Tone_of_Voice")
model = BertForSequenceClassification.from_pretrained("Oliver12315/Brand_Tone_of_Voice")
model = model.to(device)
def single_sentence(sentence):
predictions = predict_single(sentence, tokenizer, model, device)
return sorted(zip(LABEL_COLUMNS, predictions), key=lambda x:x[-1], reverse=True)
def csv_process(csv_file, attr="content"):
current_time = datetime.now()
formatted_time = current_time.strftime("%Y_%m_%d_%H_%M_%S")
data = pd.read_csv(csv_file.name)
data = data.reset_index()
os.makedirs('output', exist_ok=True)
outputs = []
predictions = predict_csv(data, attr, tokenizer, model, device)
output_path = f"output/prediction_Brand_Tone_of_Voice_{formatted_time}.csv"
predictions.to_csv(output_path)
outputs.append(output_path)
return outputs
def logfile_query(auth):
if get_md5(auth) == secret and os.path.exists(user_input_path):
return [user_input_path]
else:
return None
def check_save(fname, lname, cnum, email, oname, position):
errors = []
valid_vars = {}
if not fname.strip() or not lname.strip():
errors.append("Name cannot be empty")
elif fname.isdigit() or lname.isdigit():
errors.append("Name cannot be purely numerical")
else:
valid_vars["fname"] = fname
valid_vars["lname"] = lname
valid_vars["cnum"] = ''
if cnum:
if not cnum.isdigit():
errors.append("The phone number must be a pure number")
else:
valid_vars["cnum"] = cnum
if not email.strip():
errors.append("Email cannot be empty")
elif not re.match(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$', email):
errors.append("Incorrect email format")
else:
valid_vars["email"] = email
if not oname.strip():
errors.append("Organization name cannot be empty")
elif oname.isdigit():
errors.append("Organization cannot be purely numerical")
else:
valid_vars["oname"] = oname
valid_vars["position"] = ''
if position:
if position.isdigit():
errors.append("Position in your company cannot be purely numerical")
else:
valid_vars["position"] = position
if errors:
return errors
current_time = datetime.now()
formatted_time = current_time.strftime("%Y_%m_%d_%H_%M_%S")
valid_vars['time'] = formatted_time
with open(user_input_path, 'a+', encoding="utf8") as file:
file.write(json.dumps(valid_vars)+"\n")
records = {}
with open(user_input_path, 'r', encoding="utf8") as file:
for line in file:
line = line.strip()
dct = json.loads(line)
records[dct['time']] = dct
return records
my_theme = gr.Theme.from_hub("JohnSmith9982/small_and_pretty")
with gr.Blocks(theme=my_theme, title='Brand_Tone_of_Voice_demo') as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/xxx" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
</a>
<div>
<h1 >Place the title of the paper here</h1>
<h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;>
<a href="https://arxiv.org/abs/xx.xx"><img src="https://img.shields.io/badge/Arxiv-xx.xx-red"></a>
<a href='https://huggingface.co/spaces/Oliver12315/Brand_Tone_of_Voice_demo'><img src='https://img.shields.io/badge/Project_Page-Oliver12315/Brand_Tone_of_Voice_demo' alt='Project Page'></a>
<a href='https://github.com'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
</div>
</div>
</div>
""")
with gr.Column(visible=True) as regis:
gr.Markdown("# Welcome to BTV! Please fill out the form below to continue.\nI’m assuming that you mention somewhere that this project/research is conducted by the University of Manchester/AMBS. By ticking this box, I consent to be approached by the research team of the University of Manchester.")
with gr.Column(variant='panel'):
fname_tb = gr.Textbox(label="First Name: ", type='text')
lname_tb = gr.Textbox(label="Last Name: ", type='text')
email_tb = gr.Textbox(label="Email: ", type='email')
cnum_tb = gr.Textbox(label="Contact: (Optional)", type='text')
oname_tb = gr.Textbox(label="Organization name: ", type='text')
position_tb = gr.Textbox(label="Positions in your company: (Optional)", type='text')
error_box = gr.HTML(value="", visible=False)
submit_btn = gr.Button("Click here to start if you have fullfill all the item!")
with gr.Row(visible=False) as mainrow:
with gr.Tab("Single Sentence"):
with gr.Row():
tbox_input = gr.Textbox(label="Input",
info="Please input a sentence here:")
gr.Markdown("""
# Detailed information about our model:
...
""")
tab_output = gr.DataFrame(label='Predictions:',
headers=["Label", "Probability"],
datatype=["str", "number"],
interactive=False)
with gr.Row():
button_ss = gr.Button("Submit", variant="primary")
button_ss.click(fn=single_sentence, inputs=[tbox_input], outputs=[tab_output])
gr.ClearButton([tbox_input, tab_output])
gr.Examples(
examples=examples,
inputs=tbox_input,
examples_per_page=len(examples)
)
with gr.Tab("Csv File"):
with gr.Row():
csv_input = gr.File(label="CSV File:",
file_types=['.csv'],
file_count="single"
)
csv_output = gr.File(label="Predictions:")
with gr.Row():
button_cf = gr.Button("Submit", variant="primary")
button_cf.click(fn=csv_process, inputs=[csv_input], outputs=[csv_output])
gr.ClearButton([csv_input, csv_output])
gr.Markdown("## Examples \n The incoming CSV must include the ``content`` field, which represents the text that needs to be predicted!")
gr.DataFrame(label='Csv input format:',
value=[[i, examples[i]] for i in range(len(examples))],
headers=["index", "content"],
datatype=["number","str"],
interactive=False
)
with gr.Tab("Readme"):
gr.Markdown(
"""
# Paper Name
# Authors
+ First author
+ Corresponding author
# Detailed Information
...
"""
)
with gr.Tab("Log File"):
with gr.Row():
auth_token = gr.Textbox(label="Authentication Tokens: ", info="Enter the key to download persistent stored log information.")
log_output = gr.File(label="Log file: ")
with gr.Row():
button_lf = gr.Button("Validate", variant="primary")
button_lf.click(fn=logfile_query, inputs=[auth_token], outputs=[log_output])
gr.ClearButton([auth_token, log_output])
def submit(*user_input):
res = check_save(*user_input)
if isinstance(res, list):
return {
error_box: gr.HTML(
value=f"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<p style="color:red;">{"; ".join(res)}</p>
</div>
</div>
""",
visible=True)
}
else:
return {
mainrow: gr.Row(visible=True),
regis: gr.Row(visible=False),
error_box: gr.HTML(visible=False)
}
submit_btn.click(
submit,
[fname_tb, lname_tb, cnum_tb, email_tb, oname_tb, position_tb],
[mainrow, regis, error_box],
)
demo.launch() |