Spaces:
Running
Running
Limit audio files to 120s
Browse files- app.py +20 -1
- requirements.txt +2 -1
app.py
CHANGED
@@ -4,9 +4,14 @@ import gradio as gr
|
|
4 |
from utils import write_vtt
|
5 |
import whisper
|
6 |
|
|
|
|
|
7 |
#import os
|
8 |
#os.system("pip install git+https://github.com/openai/whisper.git")
|
9 |
|
|
|
|
|
|
|
10 |
LANGUAGES = [
|
11 |
"English",
|
12 |
"Chinese",
|
@@ -116,6 +121,13 @@ def greet(modelName, languageName, uploadFile, microphoneData, task):
|
|
116 |
selectedLanguage = languageName.lower() if len(languageName) > 0 else None
|
117 |
selectedModel = modelName if modelName is not None else "base"
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
model = model_cache.get(selectedModel, None)
|
120 |
|
121 |
if not model:
|
@@ -130,7 +142,14 @@ def greet(modelName, languageName, uploadFile, microphoneData, task):
|
|
130 |
|
131 |
return result["text"], segmentStream.read()
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
|
135 |
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
|
136 |
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
|
|
|
4 |
from utils import write_vtt
|
5 |
import whisper
|
6 |
|
7 |
+
import ffmpeg
|
8 |
+
|
9 |
#import os
|
10 |
#os.system("pip install git+https://github.com/openai/whisper.git")
|
11 |
|
12 |
+
# Limitations (set to -1 to disable)
|
13 |
+
INPUT_AUDIO_MAX_DURATION = 60 # seconds
|
14 |
+
|
15 |
LANGUAGES = [
|
16 |
"English",
|
17 |
"Chinese",
|
|
|
121 |
selectedLanguage = languageName.lower() if len(languageName) > 0 else None
|
122 |
selectedModel = modelName if modelName is not None else "base"
|
123 |
|
124 |
+
if INPUT_AUDIO_MAX_DURATION > 0:
|
125 |
+
# Calculate audio length
|
126 |
+
audioDuration = ffmpeg.probe(source)["format"]["duration"]
|
127 |
+
|
128 |
+
if float(audioDuration) > INPUT_AUDIO_MAX_DURATION:
|
129 |
+
return ("[ERROR]: Maximum audio file length is " + str(INPUT_AUDIO_MAX_DURATION) + "s, file was " + str(audioDuration) + "s"), "[ERROR]"
|
130 |
+
|
131 |
model = model_cache.get(selectedModel, None)
|
132 |
|
133 |
if not model:
|
|
|
142 |
|
143 |
return result["text"], segmentStream.read()
|
144 |
|
145 |
+
ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse "
|
146 |
+
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition "
|
147 |
+
ui_description += " as well as speech translation and language identification. "
|
148 |
+
|
149 |
+
if INPUT_AUDIO_MAX_DURATION > 0:
|
150 |
+
ui_description += "\n\n" + "Max audio file length: " + str(INPUT_AUDIO_MAX_DURATION) + " s"
|
151 |
+
|
152 |
+
demo = gr.Interface(fn=greet, description=ui_description, inputs=[
|
153 |
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
|
154 |
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
|
155 |
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
git+https://github.com/openai/whisper.git
|
2 |
-
transformers
|
|
|
|
1 |
git+https://github.com/openai/whisper.git
|
2 |
+
transformers
|
3 |
+
ffmpeg-python==0.2.0
|