|
import gradio as gr |
|
import requests |
|
import io |
|
import random |
|
import os |
|
import time |
|
from PIL import Image |
|
from deep_translator import GoogleTranslator |
|
import json |
|
|
|
|
|
|
|
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large" |
|
API_TOKEN = os.getenv("HF_READ_TOKEN") |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
timeout = 100 |
|
|
|
|
|
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024): |
|
if prompt == "" or prompt is None: |
|
return None |
|
|
|
key = random.randint(0, 999) |
|
|
|
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
|
|
|
|
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) |
|
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') |
|
|
|
|
|
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." |
|
print(f'\033[1mGeneration {key}:\033[0m {prompt}') |
|
|
|
|
|
payload = { |
|
"inputs": prompt, |
|
"is_negative": is_negative, |
|
"steps": steps, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed if seed != -1 else random.randint(1, 1000000000), |
|
"strength": strength, |
|
"parameters": { |
|
"width": width, |
|
"height": height |
|
} |
|
} |
|
|
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) |
|
if response.status_code != 200: |
|
print(f"Error: Failed to get image. Response status: {response.status_code}") |
|
print(f"Response content: {response.text}") |
|
if response.status_code == 503: |
|
raise gr.Error(f"{response.status_code} : The model is being loaded") |
|
raise gr.Error(f"{response.status_code}") |
|
|
|
try: |
|
|
|
image_bytes = response.content |
|
image = Image.open(io.BytesIO(image_bytes)) |
|
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') |
|
return image |
|
except Exception as e: |
|
print(f"Error when trying to open the image: {e}") |
|
return None |
|
|
|
|
|
css = """ |
|
#app-container { |
|
max-width: 800px; |
|
margin-left: auto; |
|
margin-right: auto; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: |
|
|
|
gr.HTML("<center><h1>Stable Diffusion 3.5 Large</h1></center>") |
|
|
|
|
|
with gr.Column(elem_id="app-container"): |
|
|
|
with gr.Row(): |
|
with gr.Column(elem_id="prompt-container"): |
|
with gr.Row(): |
|
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32) |
|
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32) |
|
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) |
|
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) |
|
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) |
|
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) |
|
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) |
|
|
|
|
|
with gr.Row(): |
|
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") |
|
|
|
|
|
with gr.Row(): |
|
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") |
|
|
|
|
|
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output) |
|
|
|
|
|
app.launch(show_api=False, share=False) |