adamlu1 commited on
Commit
0fc5095
1 Parent(s): 0e7eee0
LICENSE ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More_considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution 4.0 International Public License
58
+
59
+ By exercising the Licensed Rights (defined below), You accept and agree
60
+ to be bound by the terms and conditions of this Creative Commons
61
+ Attribution 4.0 International Public License ("Public License"). To the
62
+ extent this Public License may be interpreted as a contract, You are
63
+ granted the Licensed Rights in consideration of Your acceptance of
64
+ these terms and conditions, and the Licensor grants You such rights in
65
+ consideration of benefits the Licensor receives from making the
66
+ Licensed Material available under these terms and conditions.
67
+
68
+
69
+ Section 1 -- Definitions.
70
+
71
+ a. Adapted Material means material subject to Copyright and Similar
72
+ Rights that is derived from or based upon the Licensed Material
73
+ and in which the Licensed Material is translated, altered,
74
+ arranged, transformed, or otherwise modified in a manner requiring
75
+ permission under the Copyright and Similar Rights held by the
76
+ Licensor. For purposes of this Public License, where the Licensed
77
+ Material is a musical work, performance, or sound recording,
78
+ Adapted Material is always produced where the Licensed Material is
79
+ synched in timed relation with a moving image.
80
+
81
+ b. Adapter's License means the license You apply to Your Copyright
82
+ and Similar Rights in Your contributions to Adapted Material in
83
+ accordance with the terms and conditions of this Public License.
84
+
85
+ c. Copyright and Similar Rights means copyright and/or similar rights
86
+ closely related to copyright including, without limitation,
87
+ performance, broadcast, sound recording, and Sui Generis Database
88
+ Rights, without regard to how the rights are labeled or
89
+ categorized. For purposes of this Public License, the rights
90
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
91
+ Rights.
92
+
93
+ d. Effective Technological Measures means those measures that, in the
94
+ absence of proper authority, may not be circumvented under laws
95
+ fulfilling obligations under Article 11 of the WIPO Copyright
96
+ Treaty adopted on December 20, 1996, and/or similar international
97
+ agreements.
98
+
99
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
100
+ any other exception or limitation to Copyright and Similar Rights
101
+ that applies to Your use of the Licensed Material.
102
+
103
+ f. Licensed Material means the artistic or literary work, database,
104
+ or other material to which the Licensor applied this Public
105
+ License.
106
+
107
+ g. Licensed Rights means the rights granted to You subject to the
108
+ terms and conditions of this Public License, which are limited to
109
+ all Copyright and Similar Rights that apply to Your use of the
110
+ Licensed Material and that the Licensor has authority to license.
111
+
112
+ h. Licensor means the individual(s) or entity(ies) granting rights
113
+ under this Public License.
114
+
115
+ i. Share means to provide material to the public by any means or
116
+ process that requires permission under the Licensed Rights, such
117
+ as reproduction, public display, public performance, distribution,
118
+ dissemination, communication, or importation, and to make material
119
+ available to the public including in ways that members of the
120
+ public may access the material from a place and at a time
121
+ individually chosen by them.
122
+
123
+ j. Sui Generis Database Rights means rights other than copyright
124
+ resulting from Directive 96/9/EC of the European Parliament and of
125
+ the Council of 11 March 1996 on the legal protection of databases,
126
+ as amended and/or succeeded, as well as other essentially
127
+ equivalent rights anywhere in the world.
128
+
129
+ k. You means the individual or entity exercising the Licensed Rights
130
+ under this Public License. Your has a corresponding meaning.
131
+
132
+
133
+ Section 2 -- Scope.
134
+
135
+ a. License grant.
136
+
137
+ 1. Subject to the terms and conditions of this Public License,
138
+ the Licensor hereby grants You a worldwide, royalty-free,
139
+ non-sublicensable, non-exclusive, irrevocable license to
140
+ exercise the Licensed Rights in the Licensed Material to:
141
+
142
+ a. reproduce and Share the Licensed Material, in whole or
143
+ in part; and
144
+
145
+ b. produce, reproduce, and Share Adapted Material.
146
+
147
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
148
+ Exceptions and Limitations apply to Your use, this Public
149
+ License does not apply, and You do not need to comply with
150
+ its terms and conditions.
151
+
152
+ 3. Term. The term of this Public License is specified in Section
153
+ 6(a).
154
+
155
+ 4. Media and formats; technical modifications allowed. The
156
+ Licensor authorizes You to exercise the Licensed Rights in
157
+ all media and formats whether now known or hereafter created,
158
+ and to make technical modifications necessary to do so. The
159
+ Licensor waives and/or agrees not to assert any right or
160
+ authority to forbid You from making technical modifications
161
+ necessary to exercise the Licensed Rights, including
162
+ technical modifications necessary to circumvent Effective
163
+ Technological Measures. For purposes of this Public License,
164
+ simply making modifications authorized by this Section 2(a)
165
+ (4) never produces Adapted Material.
166
+
167
+ 5. Downstream recipients.
168
+
169
+ a. Offer from the Licensor -- Licensed Material. Every
170
+ recipient of the Licensed Material automatically
171
+ receives an offer from the Licensor to exercise the
172
+ Licensed Rights under the terms and conditions of this
173
+ Public License.
174
+
175
+ b. No downstream restrictions. You may not offer or impose
176
+ any additional or different terms or conditions on, or
177
+ apply any Effective Technological Measures to, the
178
+ Licensed Material if doing so restricts exercise of the
179
+ Licensed Rights by any recipient of the Licensed
180
+ Material.
181
+
182
+ 6. No endorsement. Nothing in this Public License constitutes or
183
+ may be construed as permission to assert or imply that You
184
+ are, or that Your use of the Licensed Material is, connected
185
+ with, or sponsored, endorsed, or granted official status by,
186
+ the Licensor or others designated to receive attribution as
187
+ provided in Section 3(a)(1)(A)(i).
188
+
189
+ b. Other rights.
190
+
191
+ 1. Moral rights, such as the right of integrity, are not
192
+ licensed under this Public License, nor are publicity,
193
+ privacy, and/or other similar personality rights; however, to
194
+ the extent possible, the Licensor waives and/or agrees not to
195
+ assert any such rights held by the Licensor to the limited
196
+ extent necessary to allow You to exercise the Licensed
197
+ Rights, but not otherwise.
198
+
199
+ 2. Patent and trademark rights are not licensed under this
200
+ Public License.
201
+
202
+ 3. To the extent possible, the Licensor waives any right to
203
+ collect royalties from You for the exercise of the Licensed
204
+ Rights, whether directly or through a collecting society
205
+ under any voluntary or waivable statutory or compulsory
206
+ licensing scheme. In all other cases the Licensor expressly
207
+ reserves any right to collect such royalties.
208
+
209
+
210
+ Section 3 -- License Conditions.
211
+
212
+ Your exercise of the Licensed Rights is expressly made subject to the
213
+ following conditions.
214
+
215
+ a. Attribution.
216
+
217
+ 1. If You Share the Licensed Material (including in modified
218
+ form), You must:
219
+
220
+ a. retain the following if it is supplied by the Licensor
221
+ with the Licensed Material:
222
+
223
+ i. identification of the creator(s) of the Licensed
224
+ Material and any others designated to receive
225
+ attribution, in any reasonable manner requested by
226
+ the Licensor (including by pseudonym if
227
+ designated);
228
+
229
+ ii. a copyright notice;
230
+
231
+ iii. a notice that refers to this Public License;
232
+
233
+ iv. a notice that refers to the disclaimer of
234
+ warranties;
235
+
236
+ v. a URI or hyperlink to the Licensed Material to the
237
+ extent reasonably practicable;
238
+
239
+ b. indicate if You modified the Licensed Material and
240
+ retain an indication of any previous modifications; and
241
+
242
+ c. indicate the Licensed Material is licensed under this
243
+ Public License, and include the text of, or the URI or
244
+ hyperlink to, this Public License.
245
+
246
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
247
+ reasonable manner based on the medium, means, and context in
248
+ which You Share the Licensed Material. For example, it may be
249
+ reasonable to satisfy the conditions by providing a URI or
250
+ hyperlink to a resource that includes the required
251
+ information.
252
+
253
+ 3. If requested by the Licensor, You must remove any of the
254
+ information required by Section 3(a)(1)(A) to the extent
255
+ reasonably practicable.
256
+
257
+ 4. If You Share Adapted Material You produce, the Adapter's
258
+ License You apply must not prevent recipients of the Adapted
259
+ Material from complying with this Public License.
260
+
261
+
262
+ Section 4 -- Sui Generis Database Rights.
263
+
264
+ Where the Licensed Rights include Sui Generis Database Rights that
265
+ apply to Your use of the Licensed Material:
266
+
267
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
268
+ to extract, reuse, reproduce, and Share all or a substantial
269
+ portion of the contents of the database;
270
+
271
+ b. if You include all or a substantial portion of the database
272
+ contents in a database in which You have Sui Generis Database
273
+ Rights, then the database in which You have Sui Generis Database
274
+ Rights (but not its individual contents) is Adapted Material; and
275
+
276
+ c. You must comply with the conditions in Section 3(a) if You Share
277
+ all or a substantial portion of the contents of the database.
278
+
279
+ For the avoidance of doubt, this Section 4 supplements and does not
280
+ replace Your obligations under this Public License where the Licensed
281
+ Rights include other Copyright and Similar Rights.
282
+
283
+
284
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
285
+
286
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
287
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
288
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
289
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
290
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
291
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
292
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
293
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
294
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
295
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
296
+
297
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
298
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
299
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
300
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
301
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
302
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
303
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
304
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
305
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
306
+
307
+ c. The disclaimer of warranties and limitation of liability provided
308
+ above shall be interpreted in a manner that, to the extent
309
+ possible, most closely approximates an absolute disclaimer and
310
+ waiver of all liability.
311
+
312
+
313
+ Section 6 -- Term and Termination.
314
+
315
+ a. This Public License applies for the term of the Copyright and
316
+ Similar Rights licensed here. However, if You fail to comply with
317
+ this Public License, then Your rights under this Public License
318
+ terminate automatically.
319
+
320
+ b. Where Your right to use the Licensed Material has terminated under
321
+ Section 6(a), it reinstates:
322
+
323
+ 1. automatically as of the date the violation is cured, provided
324
+ it is cured within 30 days of Your discovery of the
325
+ violation; or
326
+
327
+ 2. upon express reinstatement by the Licensor.
328
+
329
+ For the avoidance of doubt, this Section 6(b) does not affect any
330
+ right the Licensor may have to seek remedies for Your violations
331
+ of this Public License.
332
+
333
+ c. For the avoidance of doubt, the Licensor may also offer the
334
+ Licensed Material under separate terms or conditions or stop
335
+ distributing the Licensed Material at any time; however, doing so
336
+ will not terminate this Public License.
337
+
338
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
339
+ License.
340
+
341
+
342
+ Section 7 -- Other Terms and Conditions.
343
+
344
+ a. The Licensor shall not be bound by any additional or different
345
+ terms or conditions communicated by You unless expressly agreed.
346
+
347
+ b. Any arrangements, understandings, or agreements regarding the
348
+ Licensed Material not stated herein are separate from and
349
+ independent of the terms and conditions of this Public License.
350
+
351
+
352
+ Section 8 -- Interpretation.
353
+
354
+ a. For the avoidance of doubt, this Public License does not, and
355
+ shall not be interpreted to, reduce, limit, restrict, or impose
356
+ conditions on any use of the Licensed Material that could lawfully
357
+ be made without permission under this Public License.
358
+
359
+ b. To the extent possible, if any provision of this Public License is
360
+ deemed unenforceable, it shall be automatically reformed to the
361
+ minimum extent necessary to make it enforceable. If the provision
362
+ cannot be reformed, it shall be severed from this Public License
363
+ without affecting the enforceability of the remaining terms and
364
+ conditions.
365
+
366
+ c. No term or condition of this Public License will be waived and no
367
+ failure to comply consented to unless expressly agreed to by the
368
+ Licensor.
369
+
370
+ d. Nothing in this Public License constitutes or may be interpreted
371
+ as a limitation upon, or waiver of, any privileges and immunities
372
+ that apply to the Licensor or You, including from the legal
373
+ processes of any jurisdiction or authority.
374
+
375
+
376
+ =======================================================================
377
+
378
+ Creative Commons is not a party to its public
379
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
380
+ its public licenses to material it publishes and in those instances
381
+ will be considered the “Licensor.” The text of the Creative Commons
382
+ public licenses is dedicated to the public domain under the CC0 Public
383
+ Domain Dedication. Except for the limited purpose of indicating that
384
+ material is shared under a Creative Commons public license or as
385
+ otherwise permitted by the Creative Commons policies published at
386
+ creativecommons.org/policies, Creative Commons does not authorize the
387
+ use of the trademark "Creative Commons" or any other trademark or logo
388
+ of Creative Commons without its prior written consent including,
389
+ without limitation, in connection with any unauthorized modifications
390
+ to any of its public licenses or any other arrangements,
391
+ understandings, or agreements concerning use of licensed material. For
392
+ the avoidance of doubt, this paragraph does not form part of the
393
+ public licenses.
394
+
395
+ Creative Commons may be contacted at creativecommons.org.
README.md CHANGED
@@ -1,13 +1,56 @@
1
- ---
2
- title: OmniParser
3
- emoji: 🌖
4
- colorFrom: yellow
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.4.0
8
- app_file: app.py
9
- pinned: false
10
- short_description: Quick demo for OmniParser
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # OmniParser: Screen Parsing tool for Pure Vision Based GUI Agent
2
+
3
+ <p align="center">
4
+ <img src="imgs/logo.png" alt="Logo">
5
+ </p>
6
+
7
+ [![arXiv](https://img.shields.io/badge/Paper-green)](https://arxiv.org/abs/2408.00203)
8
+ [![License](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
9
+
10
+ 📢 [[Project Page](https://microsoft.github.io/OmniParser/)] [[Blog Post](https://www.microsoft.com/en-us/research/articles/omniparser-for-pure-vision-based-gui-agent/)] [[Models](https://huggingface.co/microsoft/OmniParser)]
11
+
12
+ **OmniParser** is a comprehensive method for parsing user interface screenshots into structured and easy-to-understand elements, which significantly enhances the ability of GPT-4V to generate actions that can be accurately grounded in the corresponding regions of the interface.
13
+
14
+ ## News
15
+ - [2024/10] Both Interactive Region Detection Model and Icon functional description model are released! [Hugginface models](https://huggingface.co/microsoft/OmniParser)
16
+ - [2024/09] OmniParser achieves the best performance on [Windows Agent Arena](https://microsoft.github.io/WindowsAgentArena/)!
17
+
18
+ ## Install
19
+ Install environment:
20
+ ```python
21
+ conda create -n "omni" python==3.12
22
+ conda activate omni
23
+ pip install -r requirements.txt
24
+ ```
25
+
26
+ Then download the model ckpts files in: https://huggingface.co/microsoft/OmniParser, and put them under weights/, default folder structure is: weights/icon_detect, weights/icon_caption_florence, weights/icon_caption_blip2.
27
+
28
+ Finally, convert the safetensor to .pt file.
29
+ ```python
30
+ python weights/convert_safetensor_to_pt.py
31
+ ```
32
+
33
+ ## Examples:
34
+ We put together a few simple examples in the demo.ipynb.
35
+
36
+ ## Gradio Demo
37
+ To run gradio demo, simply run:
38
+ ```python
39
+ python gradio_demo.py
40
+ ```
41
+
42
+
43
+ ## 📚 Citation
44
+ Our technical report can be found [here](https://arxiv.org/abs/2408.00203).
45
+ If you find our work useful, please consider citing our work:
46
+ ```
47
+ @misc{lu2024omniparserpurevisionbased,
48
+ title={OmniParser for Pure Vision Based GUI Agent},
49
+ author={Yadong Lu and Jianwei Yang and Yelong Shen and Ahmed Awadallah},
50
+ year={2024},
51
+ eprint={2408.00203},
52
+ archivePrefix={arXiv},
53
+ primaryClass={cs.CV},
54
+ url={https://arxiv.org/abs/2408.00203},
55
+ }
56
+ ```
SECURITY.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
2
+
3
+ ## Security
4
+
5
+ Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
6
+
7
+ If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
8
+
9
+ ## Reporting Security Issues
10
+
11
+ **Please do not report security vulnerabilities through public GitHub issues.**
12
+
13
+ Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
14
+
15
+ If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
16
+
17
+ You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
18
+
19
+ Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
20
+
21
+ * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
22
+ * Full paths of source file(s) related to the manifestation of the issue
23
+ * The location of the affected source code (tag/branch/commit or direct URL)
24
+ * Any special configuration required to reproduce the issue
25
+ * Step-by-step instructions to reproduce the issue
26
+ * Proof-of-concept or exploit code (if possible)
27
+ * Impact of the issue, including how an attacker might exploit the issue
28
+
29
+ This information will help us triage your report more quickly.
30
+
31
+ If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
32
+
33
+ ## Preferred Languages
34
+
35
+ We prefer all communications to be in English.
36
+
37
+ ## Policy
38
+
39
+ Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
40
+
41
+ <!-- END MICROSOFT SECURITY.MD BLOCK -->
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+
3
+ import gradio as gr
4
+ import numpy as np
5
+ import torch
6
+ from PIL import Image
7
+ import io
8
+
9
+
10
+ import base64, os
11
+ from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
12
+ import torch
13
+ from PIL import Image
14
+
15
+ yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
16
+ caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
17
+ platform = 'pc'
18
+ if platform == 'pc':
19
+ draw_bbox_config = {
20
+ 'text_scale': 0.8,
21
+ 'text_thickness': 2,
22
+ 'text_padding': 2,
23
+ 'thickness': 2,
24
+ }
25
+ elif platform == 'web':
26
+ draw_bbox_config = {
27
+ 'text_scale': 0.8,
28
+ 'text_thickness': 2,
29
+ 'text_padding': 3,
30
+ 'thickness': 3,
31
+ }
32
+ elif platform == 'mobile':
33
+ draw_bbox_config = {
34
+ 'text_scale': 0.8,
35
+ 'text_thickness': 2,
36
+ 'text_padding': 3,
37
+ 'thickness': 3,
38
+ }
39
+
40
+
41
+
42
+ MARKDOWN = """
43
+ # OmniParser for Pure Vision Based General GUI Agent 🔥
44
+ <div>
45
+ <a href="https://arxiv.org/pdf/2408.00203">
46
+ <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
47
+ </a>
48
+ </div>
49
+
50
+ OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
51
+ """
52
+
53
+ DEVICE = torch.device('cuda')
54
+
55
+ # @spaces.GPU
56
+ # @torch.inference_mode()
57
+ # @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
58
+ def process(
59
+ image_input,
60
+ box_threshold,
61
+ iou_threshold
62
+ ) -> Optional[Image.Image]:
63
+
64
+ image_save_path = 'imgs/saved_image_demo.png'
65
+ image_input.save(image_save_path)
66
+ # import pdb; pdb.set_trace()
67
+
68
+ ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
69
+ text, ocr_bbox = ocr_bbox_rslt
70
+ # print('prompt:', prompt)
71
+ dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold)
72
+ image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
73
+ print('finish processing')
74
+ parsed_content_list = '\n'.join(parsed_content_list)
75
+ return image, str(parsed_content_list)
76
+
77
+
78
+
79
+ with gr.Blocks() as demo:
80
+ gr.Markdown(MARKDOWN)
81
+ with gr.Row():
82
+ with gr.Column():
83
+ image_input_component = gr.Image(
84
+ type='pil', label='Upload image')
85
+ # set the threshold for removing the bounding boxes with low confidence, default is 0.05
86
+ box_threshold_component = gr.Slider(
87
+ label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
88
+ # set the threshold for removing the bounding boxes with large overlap, default is 0.1
89
+ iou_threshold_component = gr.Slider(
90
+ label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
91
+ submit_button_component = gr.Button(
92
+ value='Submit', variant='primary')
93
+ with gr.Column():
94
+ image_output_component = gr.Image(type='pil', label='Image Output')
95
+ text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
96
+
97
+ submit_button_component.click(
98
+ fn=process,
99
+ inputs=[
100
+ image_input_component,
101
+ box_threshold_component,
102
+ iou_threshold_component
103
+ ],
104
+ outputs=[image_output_component, text_output_component]
105
+ )
106
+
107
+ # demo.launch(debug=False, show_error=True, share=True)
108
+ demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
omniparser.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils import get_som_labeled_img, check_ocr_box, get_caption_model_processor, get_dino_model, get_yolo_model
2
+ import torch
3
+ from ultralytics import YOLO
4
+ from PIL import Image
5
+ from typing import Dict, Tuple, List
6
+ import io
7
+ import base64
8
+
9
+
10
+ config = {
11
+ 'som_model_path': 'finetuned_icon_detect.pt',
12
+ 'device': 'cpu',
13
+ 'caption_model_path': 'Salesforce/blip2-opt-2.7b',
14
+ 'draw_bbox_config': {
15
+ 'text_scale': 0.8,
16
+ 'text_thickness': 2,
17
+ 'text_padding': 3,
18
+ 'thickness': 3,
19
+ },
20
+ 'BOX_TRESHOLD': 0.05
21
+ }
22
+
23
+
24
+ class Omniparser(object):
25
+ def __init__(self, config: Dict):
26
+ self.config = config
27
+
28
+ self.som_model = get_yolo_model(model_path=config['som_model_path'])
29
+ # self.caption_model_processor = get_caption_model_processor(config['caption_model_path'], device=cofig['device'])
30
+ # self.caption_model_processor['model'].to(torch.float32)
31
+
32
+ def parse(self, image_path: str):
33
+ print('Parsing image:', image_path)
34
+ ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
35
+ text, ocr_bbox = ocr_bbox_rslt
36
+
37
+ draw_bbox_config = self.config['draw_bbox_config']
38
+ BOX_TRESHOLD = self.config['BOX_TRESHOLD']
39
+ dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_path, self.som_model, BOX_TRESHOLD = BOX_TRESHOLD, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=None, ocr_text=text,use_local_semantics=False)
40
+
41
+ image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
42
+ # formating output
43
+ return_list = [{'from': 'omniparser', 'shape': {'x':coord[0], 'y':coord[1], 'width':coord[2], 'height':coord[3]},
44
+ 'text': parsed_content_list[i].split(': ')[1], 'type':'text'} for i, (k, coord) in enumerate(label_coordinates.items()) if i < len(parsed_content_list)]
45
+ return_list.extend(
46
+ [{'from': 'omniparser', 'shape': {'x':coord[0], 'y':coord[1], 'width':coord[2], 'height':coord[3]},
47
+ 'text': 'None', 'type':'icon'} for i, (k, coord) in enumerate(label_coordinates.items()) if i >= len(parsed_content_list)]
48
+ )
49
+
50
+ return [image, return_list]
51
+
52
+ parser = Omniparser(config)
53
+ image_path = 'examples/pc_1.png'
54
+
55
+ # time the parser
56
+ import time
57
+ s = time.time()
58
+ image, parsed_content_list = parser.parse(image_path)
59
+ device = config['device']
60
+ print(f'Time taken for Omniparser on {device}:', time.time() - s)
requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ easyocr
3
+ torchvision
4
+ supervision==0.18.0
5
+ openai==1.3.5
6
+ transformers
7
+ ultralytics==8.1.24
8
+ azure-identity
9
+ numpy
10
+ opencv-python
11
+ opencv-python-headless
12
+ gradio
13
+ dill
14
+ accelerate
15
+ timm
16
+ einops==0.8.0
util/__init__.py ADDED
File without changes
util/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (139 Bytes). View file
 
util/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (141 Bytes). View file
 
util/__pycache__/action_matching.cpython-39.pyc ADDED
Binary file (8.49 kB). View file
 
util/__pycache__/box_annotator.cpython-312.pyc ADDED
Binary file (9.79 kB). View file
 
util/__pycache__/box_annotator.cpython-39.pyc ADDED
Binary file (6.57 kB). View file
 
util/action_matching.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Adapted from https://github.com/google-research/google-research/tree/master/android_in_the_wild
3
+ '''
4
+
5
+ import jax
6
+ import jax.numpy as jnp
7
+ import numpy as np
8
+
9
+ # import action_type as action_type_lib
10
+ import enum
11
+
12
+ class ActionType(enum.IntEnum):
13
+ # Placeholders for unused enum values
14
+ UNUSED_0 = 0
15
+ UNUSED_1 = 1
16
+ UNUSED_2 = 2
17
+ UNUSED_8 = 8
18
+ UNUSED_9 = 9
19
+
20
+ ########### Agent actions ###########
21
+
22
+ # A type action that sends text to the emulator. Note that this simply sends
23
+ # text and does not perform any clicks for element focus or enter presses for
24
+ # submitting text.
25
+ TYPE = 3
26
+
27
+ # The dual point action used to represent all gestures.
28
+ DUAL_POINT = 4
29
+
30
+ # These actions differentiate pressing the home and back button from touches.
31
+ # They represent explicit presses of back and home performed using ADB.
32
+ PRESS_BACK = 5
33
+ PRESS_HOME = 6
34
+
35
+ # An action representing that ADB command for hitting enter was performed.
36
+ PRESS_ENTER = 7
37
+
38
+ ########### Episode status actions ###########
39
+
40
+ # An action used to indicate the desired task has been completed and resets
41
+ # the environment. This action should also be used in the case that the task
42
+ # has already been completed and there is nothing to do.
43
+ # e.g. The task is to turn on the Wi-Fi when it is already on
44
+ STATUS_TASK_COMPLETE = 10
45
+
46
+ # An action used to indicate that desired task is impossible to complete and
47
+ # resets the environment. This can be a result of many different things
48
+ # including UI changes, Android version differences, etc.
49
+ STATUS_TASK_IMPOSSIBLE = 11
50
+
51
+
52
+ _TAP_DISTANCE_THRESHOLD = 0.14 # Fraction of the screen
53
+ ANNOTATION_WIDTH_AUGMENT_FRACTION = 1.4
54
+ ANNOTATION_HEIGHT_AUGMENT_FRACTION = 1.4
55
+
56
+ # Interval determining if an action is a tap or a swipe.
57
+ _SWIPE_DISTANCE_THRESHOLD = 0.04
58
+
59
+
60
+ def _yx_in_bounding_boxes(
61
+ yx, bounding_boxes
62
+ ):
63
+ """Check if the (y,x) point is contained in each bounding box.
64
+
65
+ Args:
66
+ yx: The (y, x) coordinate in pixels of the point.
67
+ bounding_boxes: A 2D int array of shape (num_bboxes, 4), where each row
68
+ represents a bounding box: (y_top_left, x_top_left, box_height,
69
+ box_width). Note: containment is inclusive of the bounding box edges.
70
+
71
+ Returns:
72
+ is_inside: A 1D bool array where each element specifies if the point is
73
+ contained within the respective box.
74
+ """
75
+ y, x = yx
76
+
77
+ # `bounding_boxes` has shape (n_elements, 4); we extract each array along the
78
+ # last axis into shape (n_elements, 1), then squeeze unneeded dimension.
79
+ top, left, height, width = [
80
+ jnp.squeeze(v, axis=-1) for v in jnp.split(bounding_boxes, 4, axis=-1)
81
+ ]
82
+
83
+ # The y-axis is inverted for AndroidEnv, so bottom = top + height.
84
+ bottom, right = top + height, left + width
85
+
86
+ return jnp.logical_and(y >= top, y <= bottom) & jnp.logical_and(
87
+ x >= left, x <= right)
88
+
89
+
90
+ def _resize_annotation_bounding_boxes(
91
+ annotation_positions, annotation_width_augment_fraction,
92
+ annotation_height_augment_fraction):
93
+ """Resize the bounding boxes by the given fractions.
94
+
95
+ Args:
96
+ annotation_positions: Array of shape (N, 4), where each row represents the
97
+ (y, x, height, width) of the bounding boxes.
98
+ annotation_width_augment_fraction: The fraction to augment the box widths,
99
+ E.g., 1.4 == 240% total increase.
100
+ annotation_height_augment_fraction: Same as described for width, but for box
101
+ height.
102
+
103
+ Returns:
104
+ Resized bounding box.
105
+
106
+ """
107
+ height_change = (
108
+ annotation_height_augment_fraction * annotation_positions[:, 2])
109
+ width_change = (
110
+ annotation_width_augment_fraction * annotation_positions[:, 3])
111
+
112
+ # Limit bounding box positions to the screen.
113
+ resized_annotations = jnp.stack([
114
+ jnp.maximum(0, annotation_positions[:, 0] - (height_change / 2)),
115
+ jnp.maximum(0, annotation_positions[:, 1] - (width_change / 2)),
116
+ jnp.minimum(1, annotation_positions[:, 2] + height_change),
117
+ jnp.minimum(1, annotation_positions[:, 3] + width_change),
118
+ ],
119
+ axis=1)
120
+ return resized_annotations
121
+
122
+
123
+ def is_tap_action(normalized_start_yx,
124
+ normalized_end_yx):
125
+ distance = jnp.linalg.norm(
126
+ jnp.array(normalized_start_yx) - jnp.array(normalized_end_yx))
127
+ return distance <= _SWIPE_DISTANCE_THRESHOLD
128
+
129
+
130
+ def _is_non_dual_point_action(action_type):
131
+ return jnp.not_equal(action_type, ActionType.DUAL_POINT)
132
+
133
+
134
+ def _check_tap_actions_match(
135
+ tap_1_yx,
136
+ tap_2_yx,
137
+ annotation_positions,
138
+ matching_tap_distance_threshold_screen_percentage,
139
+ annotation_width_augment_fraction,
140
+ annotation_height_augment_fraction,
141
+ ):
142
+ """Determines if two tap actions are the same."""
143
+ resized_annotation_positions = _resize_annotation_bounding_boxes(
144
+ annotation_positions,
145
+ annotation_width_augment_fraction,
146
+ annotation_height_augment_fraction,
147
+ )
148
+
149
+ # Check if the ground truth tap action falls in an annotation's bounding box.
150
+ tap1_in_box = _yx_in_bounding_boxes(tap_1_yx, resized_annotation_positions)
151
+ tap2_in_box = _yx_in_bounding_boxes(tap_2_yx, resized_annotation_positions)
152
+ both_in_box = jnp.max(tap1_in_box & tap2_in_box)
153
+
154
+ # If the ground-truth tap action falls outside any of the annotation
155
+ # bounding boxes or one of the actions is inside a bounding box and the other
156
+ # is outside bounding box or vice versa, compare the points using Euclidean
157
+ # distance.
158
+ within_threshold = (
159
+ jnp.linalg.norm(jnp.array(tap_1_yx) - jnp.array(tap_2_yx))
160
+ <= matching_tap_distance_threshold_screen_percentage
161
+ )
162
+ return jnp.logical_or(both_in_box, within_threshold)
163
+
164
+
165
+ def _check_drag_actions_match(
166
+ drag_1_touch_yx,
167
+ drag_1_lift_yx,
168
+ drag_2_touch_yx,
169
+ drag_2_lift_yx,
170
+ ):
171
+ """Determines if two drag actions are the same."""
172
+ # Store drag deltas (the change in the y and x coordinates from touch to
173
+ # lift), magnitudes, and the index of the main axis, which is the axis with
174
+ # the greatest change in coordinate value (e.g. a drag starting at (0, 0) and
175
+ # ending at (0.3, 0.5) has a main axis index of 1).
176
+ drag_1_deltas = drag_1_lift_yx - drag_1_touch_yx
177
+ drag_1_magnitudes = jnp.abs(drag_1_deltas)
178
+ drag_1_main_axis = np.argmax(drag_1_magnitudes)
179
+ drag_2_deltas = drag_2_lift_yx - drag_2_touch_yx
180
+ drag_2_magnitudes = jnp.abs(drag_2_deltas)
181
+ drag_2_main_axis = np.argmax(drag_2_magnitudes)
182
+
183
+ return jnp.equal(drag_1_main_axis, drag_2_main_axis)
184
+
185
+
186
+ def check_actions_match(
187
+ action_1_touch_yx,
188
+ action_1_lift_yx,
189
+ action_1_action_type,
190
+ action_2_touch_yx,
191
+ action_2_lift_yx,
192
+ action_2_action_type,
193
+ annotation_positions,
194
+ tap_distance_threshold = _TAP_DISTANCE_THRESHOLD,
195
+ annotation_width_augment_fraction = ANNOTATION_WIDTH_AUGMENT_FRACTION,
196
+ annotation_height_augment_fraction = ANNOTATION_HEIGHT_AUGMENT_FRACTION,
197
+ ):
198
+ """Determines if two actions are considered to be the same.
199
+
200
+ Two actions being "the same" is defined here as two actions that would result
201
+ in a similar screen state.
202
+
203
+ Args:
204
+ action_1_touch_yx: The (y, x) coordinates of the first action's touch.
205
+ action_1_lift_yx: The (y, x) coordinates of the first action's lift.
206
+ action_1_action_type: The action type of the first action.
207
+ action_2_touch_yx: The (y, x) coordinates of the second action's touch.
208
+ action_2_lift_yx: The (y, x) coordinates of the second action's lift.
209
+ action_2_action_type: The action type of the second action.
210
+ annotation_positions: The positions of the UI annotations for the screen. It
211
+ is A 2D int array of shape (num_bboxes, 4), where each row represents a
212
+ bounding box: (y_top_left, x_top_left, box_height, box_width). Note that
213
+ containment is inclusive of the bounding box edges.
214
+ tap_distance_threshold: The threshold that determines if two taps result in
215
+ a matching screen state if they don't fall the same bounding boxes.
216
+ annotation_width_augment_fraction: The fraction to increase the width of the
217
+ bounding box by.
218
+ annotation_height_augment_fraction: The fraction to increase the height of
219
+ of the bounding box by.
220
+
221
+ Returns:
222
+ A boolean representing whether the two given actions are the same or not.
223
+ """
224
+ action_1_touch_yx = jnp.asarray(action_1_touch_yx)
225
+ action_1_lift_yx = jnp.asarray(action_1_lift_yx)
226
+ action_2_touch_yx = jnp.asarray(action_2_touch_yx)
227
+ action_2_lift_yx = jnp.asarray(action_2_lift_yx)
228
+
229
+ # Checks if at least one of the actions is global (i.e. not DUAL_POINT),
230
+ # because if that is the case, only the actions' types need to be compared.
231
+ has_non_dual_point_action = jnp.logical_or(
232
+ _is_non_dual_point_action(action_1_action_type),
233
+ _is_non_dual_point_action(action_2_action_type),
234
+ )
235
+ #print("non dual point: "+str(has_non_dual_point_action))
236
+
237
+ different_dual_point_types = jnp.logical_xor(
238
+ is_tap_action(action_1_touch_yx, action_1_lift_yx),
239
+ is_tap_action(action_2_touch_yx, action_2_lift_yx),
240
+ )
241
+ #print("different dual type: "+str(different_dual_point_types))
242
+
243
+ is_tap = jnp.logical_and(
244
+ is_tap_action(action_1_touch_yx, action_1_lift_yx),
245
+ is_tap_action(action_2_touch_yx, action_2_lift_yx),
246
+ )
247
+ #print("is tap: "+str(is_tap))
248
+
249
+ taps_match = _check_tap_actions_match(
250
+ action_1_touch_yx,
251
+ action_2_touch_yx,
252
+ annotation_positions,
253
+ tap_distance_threshold,
254
+ annotation_width_augment_fraction,
255
+ annotation_height_augment_fraction,
256
+ )
257
+ #print("tap match: "+str(taps_match))
258
+
259
+ taps_match = jnp.logical_and(is_tap, taps_match)
260
+ #print("tap match: "+str(taps_match))
261
+
262
+ drags_match = _check_drag_actions_match(
263
+ action_1_touch_yx, action_1_lift_yx, action_2_touch_yx, action_2_lift_yx
264
+ )
265
+ drags_match = jnp.where(is_tap, False, drags_match)
266
+ #print("drag match: "+str(drags_match))
267
+
268
+ return jnp.where(
269
+ has_non_dual_point_action,
270
+ jnp.equal(action_1_action_type, action_2_action_type),
271
+ jnp.where(
272
+ different_dual_point_types,
273
+ False,
274
+ jnp.logical_or(taps_match, drags_match),
275
+ ),
276
+ )
277
+
278
+
279
+ def action_2_format(step_data):
280
+ # 把test数据集中的动作格式转换为计算matching score的格式
281
+ action_type = step_data["action_type_id"]
282
+
283
+ if action_type == 4:
284
+ if step_data["action_type_text"] == 'click': # 点击
285
+ touch_point = step_data["touch"]
286
+ lift_point = step_data["lift"]
287
+ else: # 上下左右滑动
288
+ if step_data["action_type_text"] == 'scroll down':
289
+ touch_point = [0.5, 0.8]
290
+ lift_point = [0.5, 0.2]
291
+ elif step_data["action_type_text"] == 'scroll up':
292
+ touch_point = [0.5, 0.2]
293
+ lift_point = [0.5, 0.8]
294
+ elif step_data["action_type_text"] == 'scroll left':
295
+ touch_point = [0.2, 0.5]
296
+ lift_point = [0.8, 0.5]
297
+ elif step_data["action_type_text"] == 'scroll right':
298
+ touch_point = [0.8, 0.5]
299
+ lift_point = [0.2, 0.5]
300
+ else:
301
+ touch_point = [-1.0, -1.0]
302
+ lift_point = [-1.0, -1.0]
303
+
304
+ if action_type == 3:
305
+ typed_text = step_data["type_text"]
306
+ else:
307
+ typed_text = ""
308
+
309
+ action = {"action_type": action_type, "touch_point": touch_point, "lift_point": lift_point,
310
+ "typed_text": typed_text}
311
+
312
+ action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
313
+ action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
314
+ action["typed_text"] = action["typed_text"].lower()
315
+
316
+ return action
317
+
318
+
319
+ def pred_2_format(step_data):
320
+ # 把模型输出的内容转换为计算action_matching的格式
321
+ action_type = step_data["action_type"]
322
+
323
+ if action_type == 4: # 点击
324
+ action_type_new = 4
325
+ touch_point = step_data["click_point"]
326
+ lift_point = step_data["click_point"]
327
+ typed_text = ""
328
+ elif action_type == 0:
329
+ action_type_new = 4
330
+ touch_point = [0.5, 0.8]
331
+ lift_point = [0.5, 0.2]
332
+ typed_text = ""
333
+ elif action_type == 1:
334
+ action_type_new = 4
335
+ touch_point = [0.5, 0.2]
336
+ lift_point = [0.5, 0.8]
337
+ typed_text = ""
338
+ elif action_type == 8:
339
+ action_type_new = 4
340
+ touch_point = [0.2, 0.5]
341
+ lift_point = [0.8, 0.5]
342
+ typed_text = ""
343
+ elif action_type == 9:
344
+ action_type_new = 4
345
+ touch_point = [0.8, 0.5]
346
+ lift_point = [0.2, 0.5]
347
+ typed_text = ""
348
+ else:
349
+ action_type_new = action_type
350
+ touch_point = [-1.0, -1.0]
351
+ lift_point = [-1.0, -1.0]
352
+ typed_text = ""
353
+ if action_type_new == 3:
354
+ typed_text = step_data["typed_text"]
355
+
356
+ action = {"action_type": action_type_new, "touch_point": touch_point, "lift_point": lift_point,
357
+ "typed_text": typed_text}
358
+
359
+ action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
360
+ action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
361
+ action["typed_text"] = action["typed_text"].lower()
362
+
363
+ return action
364
+
365
+
366
+ def pred_2_format_simplified(step_data):
367
+ # 把模型输出的内容转换为计算action_matching的格式
368
+ action_type = step_data["action_type"]
369
+
370
+ if action_type == 'click' : # 点击
371
+ action_type_new = 4
372
+ touch_point = step_data["click_point"]
373
+ lift_point = step_data["click_point"]
374
+ typed_text = ""
375
+ elif action_type == 'scroll' and step_data["direction"] == 'down':
376
+ action_type_new = 4
377
+ touch_point = [0.5, 0.8]
378
+ lift_point = [0.5, 0.2]
379
+ typed_text = ""
380
+ elif action_type == 'scroll' and step_data["direction"] == 'up':
381
+ action_type_new = 4
382
+ touch_point = [0.5, 0.2]
383
+ lift_point = [0.5, 0.8]
384
+ typed_text = ""
385
+ elif action_type == 'scroll' and step_data["direction"] == 'left':
386
+ action_type_new = 4
387
+ touch_point = [0.2, 0.5]
388
+ lift_point = [0.8, 0.5]
389
+ typed_text = ""
390
+ elif action_type == 'scroll' and step_data["direction"] == 'right':
391
+ action_type_new = 4
392
+ touch_point = [0.8, 0.5]
393
+ lift_point = [0.2, 0.5]
394
+ typed_text = ""
395
+ elif action_type == 'type':
396
+ action_type_new = 3
397
+ touch_point = [-1.0, -1.0]
398
+ lift_point = [-1.0, -1.0]
399
+ typed_text = step_data["text"]
400
+ elif action_type == 'navigate_back':
401
+ action_type_new = 5
402
+ touch_point = [-1.0, -1.0]
403
+ lift_point = [-1.0, -1.0]
404
+ typed_text = ""
405
+ elif action_type == 'navigate_home':
406
+ action_type_new = 6
407
+ touch_point = [-1.0, -1.0]
408
+ lift_point = [-1.0, -1.0]
409
+ typed_text = ""
410
+ else:
411
+ action_type_new = action_type
412
+ touch_point = [-1.0, -1.0]
413
+ lift_point = [-1.0, -1.0]
414
+ typed_text = ""
415
+ # if action_type_new == 'type':
416
+ # typed_text = step_data["text"]
417
+
418
+ action = {"action_type": action_type_new, "touch_point": touch_point, "lift_point": lift_point,
419
+ "typed_text": typed_text}
420
+
421
+ action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
422
+ action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
423
+ action["typed_text"] = action["typed_text"].lower()
424
+
425
+ return action
util/action_type.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Adapted from https://github.com/google-research/google-research/tree/master/android_in_the_wild
3
+ '''
4
+
5
+ import enum
6
+
7
+ class ActionType(enum.IntEnum):
8
+
9
+ # Placeholders for unused enum values
10
+ UNUSED_0 = 0
11
+ UNUSED_1 = 1
12
+ UNUSED_2 = 2
13
+ UNUSED_8 = 8
14
+ UNUSED_9 = 9
15
+
16
+ ########### Agent actions ###########
17
+
18
+ # A type action that sends text to the emulator. Note that this simply sends
19
+ # text and does not perform any clicks for element focus or enter presses for
20
+ # submitting text.
21
+ TYPE = 3
22
+
23
+ # The dual point action used to represent all gestures.
24
+ DUAL_POINT = 4
25
+
26
+ # These actions differentiate pressing the home and back button from touches.
27
+ # They represent explicit presses of back and home performed using ADB.
28
+ PRESS_BACK = 5
29
+ PRESS_HOME = 6
30
+
31
+ # An action representing that ADB command for hitting enter was performed.
32
+ PRESS_ENTER = 7
33
+
34
+ ########### Episode status actions ###########
35
+
36
+ # An action used to indicate the desired task has been completed and resets
37
+ # the environment. This action should also be used in the case that the task
38
+ # has already been completed and there is nothing to do.
39
+ # e.g. The task is to turn on the Wi-Fi when it is already on
40
+ STATUS_TASK_COMPLETE = 10
41
+
42
+ # An action used to indicate that desired task is impossible to complete and
43
+ # resets the environment. This can be a result of many different things
44
+ # including UI changes, Android version differences, etc.
45
+ STATUS_TASK_IMPOSSIBLE = 11
util/box_annotator.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Union, Tuple
2
+
3
+ import cv2
4
+ import numpy as np
5
+
6
+ from supervision.detection.core import Detections
7
+ from supervision.draw.color import Color, ColorPalette
8
+
9
+
10
+ class BoxAnnotator:
11
+ """
12
+ A class for drawing bounding boxes on an image using detections provided.
13
+
14
+ Attributes:
15
+ color (Union[Color, ColorPalette]): The color to draw the bounding box,
16
+ can be a single color or a color palette
17
+ thickness (int): The thickness of the bounding box lines, default is 2
18
+ text_color (Color): The color of the text on the bounding box, default is white
19
+ text_scale (float): The scale of the text on the bounding box, default is 0.5
20
+ text_thickness (int): The thickness of the text on the bounding box,
21
+ default is 1
22
+ text_padding (int): The padding around the text on the bounding box,
23
+ default is 5
24
+
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ color: Union[Color, ColorPalette] = ColorPalette.DEFAULT,
30
+ thickness: int = 3, # 1 for seeclick 2 for mind2web and 3 for demo
31
+ text_color: Color = Color.BLACK,
32
+ text_scale: float = 0.5, # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
33
+ text_thickness: int = 2, #1, # 2 for demo
34
+ text_padding: int = 10,
35
+ avoid_overlap: bool = True,
36
+ ):
37
+ self.color: Union[Color, ColorPalette] = color
38
+ self.thickness: int = thickness
39
+ self.text_color: Color = text_color
40
+ self.text_scale: float = text_scale
41
+ self.text_thickness: int = text_thickness
42
+ self.text_padding: int = text_padding
43
+ self.avoid_overlap: bool = avoid_overlap
44
+
45
+ def annotate(
46
+ self,
47
+ scene: np.ndarray,
48
+ detections: Detections,
49
+ labels: Optional[List[str]] = None,
50
+ skip_label: bool = False,
51
+ image_size: Optional[Tuple[int, int]] = None,
52
+ ) -> np.ndarray:
53
+ """
54
+ Draws bounding boxes on the frame using the detections provided.
55
+
56
+ Args:
57
+ scene (np.ndarray): The image on which the bounding boxes will be drawn
58
+ detections (Detections): The detections for which the
59
+ bounding boxes will be drawn
60
+ labels (Optional[List[str]]): An optional list of labels
61
+ corresponding to each detection. If `labels` are not provided,
62
+ corresponding `class_id` will be used as label.
63
+ skip_label (bool): Is set to `True`, skips bounding box label annotation.
64
+ Returns:
65
+ np.ndarray: The image with the bounding boxes drawn on it
66
+
67
+ Example:
68
+ ```python
69
+ import supervision as sv
70
+
71
+ classes = ['person', ...]
72
+ image = ...
73
+ detections = sv.Detections(...)
74
+
75
+ box_annotator = sv.BoxAnnotator()
76
+ labels = [
77
+ f"{classes[class_id]} {confidence:0.2f}"
78
+ for _, _, confidence, class_id, _ in detections
79
+ ]
80
+ annotated_frame = box_annotator.annotate(
81
+ scene=image.copy(),
82
+ detections=detections,
83
+ labels=labels
84
+ )
85
+ ```
86
+ """
87
+ font = cv2.FONT_HERSHEY_SIMPLEX
88
+ for i in range(len(detections)):
89
+ x1, y1, x2, y2 = detections.xyxy[i].astype(int)
90
+ class_id = (
91
+ detections.class_id[i] if detections.class_id is not None else None
92
+ )
93
+ idx = class_id if class_id is not None else i
94
+ color = (
95
+ self.color.by_idx(idx)
96
+ if isinstance(self.color, ColorPalette)
97
+ else self.color
98
+ )
99
+ cv2.rectangle(
100
+ img=scene,
101
+ pt1=(x1, y1),
102
+ pt2=(x2, y2),
103
+ color=color.as_bgr(),
104
+ thickness=self.thickness,
105
+ )
106
+ if skip_label:
107
+ continue
108
+
109
+ text = (
110
+ f"{class_id}"
111
+ if (labels is None or len(detections) != len(labels))
112
+ else labels[i]
113
+ )
114
+
115
+ text_width, text_height = cv2.getTextSize(
116
+ text=text,
117
+ fontFace=font,
118
+ fontScale=self.text_scale,
119
+ thickness=self.text_thickness,
120
+ )[0]
121
+
122
+ if not self.avoid_overlap:
123
+ text_x = x1 + self.text_padding
124
+ text_y = y1 - self.text_padding
125
+
126
+ text_background_x1 = x1
127
+ text_background_y1 = y1 - 2 * self.text_padding - text_height
128
+
129
+ text_background_x2 = x1 + 2 * self.text_padding + text_width
130
+ text_background_y2 = y1
131
+ # text_x = x1 - self.text_padding - text_width
132
+ # text_y = y1 + self.text_padding + text_height
133
+ # text_background_x1 = x1 - 2 * self.text_padding - text_width
134
+ # text_background_y1 = y1
135
+ # text_background_x2 = x1
136
+ # text_background_y2 = y1 + 2 * self.text_padding + text_height
137
+ else:
138
+ text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2 = get_optimal_label_pos(self.text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size)
139
+
140
+ cv2.rectangle(
141
+ img=scene,
142
+ pt1=(text_background_x1, text_background_y1),
143
+ pt2=(text_background_x2, text_background_y2),
144
+ color=color.as_bgr(),
145
+ thickness=cv2.FILLED,
146
+ )
147
+ # import pdb; pdb.set_trace()
148
+ box_color = color.as_rgb()
149
+ luminance = 0.299 * box_color[0] + 0.587 * box_color[1] + 0.114 * box_color[2]
150
+ text_color = (0,0,0) if luminance > 160 else (255,255,255)
151
+ cv2.putText(
152
+ img=scene,
153
+ text=text,
154
+ org=(text_x, text_y),
155
+ fontFace=font,
156
+ fontScale=self.text_scale,
157
+ # color=self.text_color.as_rgb(),
158
+ color=text_color,
159
+ thickness=self.text_thickness,
160
+ lineType=cv2.LINE_AA,
161
+ )
162
+ return scene
163
+
164
+
165
+ def box_area(box):
166
+ return (box[2] - box[0]) * (box[3] - box[1])
167
+
168
+ def intersection_area(box1, box2):
169
+ x1 = max(box1[0], box2[0])
170
+ y1 = max(box1[1], box2[1])
171
+ x2 = min(box1[2], box2[2])
172
+ y2 = min(box1[3], box2[3])
173
+ return max(0, x2 - x1) * max(0, y2 - y1)
174
+
175
+ def IoU(box1, box2, return_max=True):
176
+ intersection = intersection_area(box1, box2)
177
+ union = box_area(box1) + box_area(box2) - intersection
178
+ if box_area(box1) > 0 and box_area(box2) > 0:
179
+ ratio1 = intersection / box_area(box1)
180
+ ratio2 = intersection / box_area(box2)
181
+ else:
182
+ ratio1, ratio2 = 0, 0
183
+ if return_max:
184
+ return max(intersection / union, ratio1, ratio2)
185
+ else:
186
+ return intersection / union
187
+
188
+
189
+ def get_optimal_label_pos(text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size):
190
+ """ check overlap of text and background detection box, and get_optimal_label_pos,
191
+ pos: str, position of the text, must be one of 'top left', 'top right', 'outer left', 'outer right' TODO: if all are overlapping, return the last one, i.e. outer right
192
+ Threshold: default to 0.3
193
+ """
194
+
195
+ def get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size):
196
+ is_overlap = False
197
+ for i in range(len(detections)):
198
+ detection = detections.xyxy[i].astype(int)
199
+ if IoU([text_background_x1, text_background_y1, text_background_x2, text_background_y2], detection) > 0.3:
200
+ is_overlap = True
201
+ break
202
+ # check if the text is out of the image
203
+ if text_background_x1 < 0 or text_background_x2 > image_size[0] or text_background_y1 < 0 or text_background_y2 > image_size[1]:
204
+ is_overlap = True
205
+ return is_overlap
206
+
207
+ # if pos == 'top left':
208
+ text_x = x1 + text_padding
209
+ text_y = y1 - text_padding
210
+
211
+ text_background_x1 = x1
212
+ text_background_y1 = y1 - 2 * text_padding - text_height
213
+
214
+ text_background_x2 = x1 + 2 * text_padding + text_width
215
+ text_background_y2 = y1
216
+ is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
217
+ if not is_overlap:
218
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
219
+
220
+ # elif pos == 'outer left':
221
+ text_x = x1 - text_padding - text_width
222
+ text_y = y1 + text_padding + text_height
223
+
224
+ text_background_x1 = x1 - 2 * text_padding - text_width
225
+ text_background_y1 = y1
226
+
227
+ text_background_x2 = x1
228
+ text_background_y2 = y1 + 2 * text_padding + text_height
229
+ is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
230
+ if not is_overlap:
231
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
232
+
233
+
234
+ # elif pos == 'outer right':
235
+ text_x = x2 + text_padding
236
+ text_y = y1 + text_padding + text_height
237
+
238
+ text_background_x1 = x2
239
+ text_background_y1 = y1
240
+
241
+ text_background_x2 = x2 + 2 * text_padding + text_width
242
+ text_background_y2 = y1 + 2 * text_padding + text_height
243
+
244
+ is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
245
+ if not is_overlap:
246
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
247
+
248
+ # elif pos == 'top right':
249
+ text_x = x2 - text_padding - text_width
250
+ text_y = y1 - text_padding
251
+
252
+ text_background_x1 = x2 - 2 * text_padding - text_width
253
+ text_background_y1 = y1 - 2 * text_padding - text_height
254
+
255
+ text_background_x2 = x2
256
+ text_background_y2 = y1
257
+
258
+ is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
259
+ if not is_overlap:
260
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
261
+
262
+ return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
utils.py ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from ultralytics import YOLO
2
+ import os
3
+ import io
4
+ import base64
5
+ import time
6
+ from PIL import Image, ImageDraw, ImageFont
7
+ import json
8
+ import requests
9
+ # utility function
10
+ import os
11
+ from openai import AzureOpenAI
12
+
13
+ import json
14
+ import sys
15
+ import os
16
+ import cv2
17
+ import numpy as np
18
+ # %matplotlib inline
19
+ from matplotlib import pyplot as plt
20
+ import easyocr
21
+ reader = easyocr.Reader(['en'])
22
+ import time
23
+ import base64
24
+
25
+ import os
26
+ import ast
27
+ import torch
28
+ from typing import Tuple, List
29
+ from torchvision.ops import box_convert
30
+ import re
31
+ from torchvision.transforms import ToPILImage
32
+ import supervision as sv
33
+ import torchvision.transforms as T
34
+
35
+
36
+ def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
37
+ if not device:
38
+ device = "cuda" if torch.cuda.is_available() else "cpu"
39
+ if model_name == "blip2":
40
+ from transformers import Blip2Processor, Blip2ForConditionalGeneration
41
+ processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
42
+ if device == 'cpu':
43
+ model = Blip2ForConditionalGeneration.from_pretrained(
44
+ model_name_or_path, device_map=None, torch_dtype=torch.float32
45
+ )
46
+ else:
47
+ model = Blip2ForConditionalGeneration.from_pretrained(
48
+ model_name_or_path, device_map=None, torch_dtype=torch.float16
49
+ ).to(device)
50
+ elif model_name == "florence2":
51
+ from transformers import AutoProcessor, AutoModelForCausalLM
52
+ processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
53
+ if device == 'cpu':
54
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
55
+ else:
56
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
57
+ return {'model': model.to(device), 'processor': processor}
58
+
59
+
60
+ def get_yolo_model(model_path):
61
+ from ultralytics import YOLO
62
+ # Load the model.
63
+ model = YOLO(model_path)
64
+ return model
65
+
66
+
67
+ @torch.inference_mode()
68
+ def get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=None):
69
+ to_pil = ToPILImage()
70
+ if ocr_bbox:
71
+ non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
72
+ else:
73
+ non_ocr_boxes = filtered_boxes
74
+ croped_pil_image = []
75
+ for i, coord in enumerate(non_ocr_boxes):
76
+ xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
77
+ ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
78
+ cropped_image = image_source[ymin:ymax, xmin:xmax, :]
79
+ croped_pil_image.append(to_pil(cropped_image))
80
+
81
+ model, processor = caption_model_processor['model'], caption_model_processor['processor']
82
+ if not prompt:
83
+ if 'florence' in model.config.name_or_path:
84
+ prompt = "<CAPTION>"
85
+ else:
86
+ prompt = "The image shows"
87
+
88
+ batch_size = 10 # Number of samples per batch
89
+ generated_texts = []
90
+ device = model.device
91
+
92
+ for i in range(0, len(croped_pil_image), batch_size):
93
+ batch = croped_pil_image[i:i+batch_size]
94
+ if model.device.type == 'cuda':
95
+ inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device, dtype=torch.float16)
96
+ else:
97
+ inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
98
+ if 'florence' in model.config.name_or_path:
99
+ generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=1024,num_beams=3, do_sample=False)
100
+ else:
101
+ generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
102
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
103
+ generated_text = [gen.strip() for gen in generated_text]
104
+ generated_texts.extend(generated_text)
105
+
106
+ return generated_texts
107
+
108
+
109
+
110
+ def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
111
+ to_pil = ToPILImage()
112
+ if ocr_bbox:
113
+ non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
114
+ else:
115
+ non_ocr_boxes = filtered_boxes
116
+ croped_pil_image = []
117
+ for i, coord in enumerate(non_ocr_boxes):
118
+ xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
119
+ ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
120
+ cropped_image = image_source[ymin:ymax, xmin:xmax, :]
121
+ croped_pil_image.append(to_pil(cropped_image))
122
+
123
+ model, processor = caption_model_processor['model'], caption_model_processor['processor']
124
+ device = model.device
125
+ messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
126
+ prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
127
+
128
+ batch_size = 5 # Number of samples per batch
129
+ generated_texts = []
130
+
131
+ for i in range(0, len(croped_pil_image), batch_size):
132
+ images = croped_pil_image[i:i+batch_size]
133
+ image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
134
+ inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
135
+ texts = [prompt] * len(images)
136
+ for i, txt in enumerate(texts):
137
+ input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
138
+ inputs['input_ids'].append(input['input_ids'])
139
+ inputs['attention_mask'].append(input['attention_mask'])
140
+ inputs['pixel_values'].append(input['pixel_values'])
141
+ inputs['image_sizes'].append(input['image_sizes'])
142
+ max_len = max([x.shape[1] for x in inputs['input_ids']])
143
+ for i, v in enumerate(inputs['input_ids']):
144
+ inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
145
+ inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
146
+ inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
147
+
148
+ generation_args = {
149
+ "max_new_tokens": 25,
150
+ "temperature": 0.01,
151
+ "do_sample": False,
152
+ }
153
+ generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
154
+ # # remove input tokens
155
+ generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
156
+ response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
157
+ response = [res.strip('\n').strip() for res in response]
158
+ generated_texts.extend(response)
159
+
160
+ return generated_texts
161
+
162
+ def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
163
+ assert ocr_bbox is None or isinstance(ocr_bbox, List)
164
+
165
+ def box_area(box):
166
+ return (box[2] - box[0]) * (box[3] - box[1])
167
+
168
+ def intersection_area(box1, box2):
169
+ x1 = max(box1[0], box2[0])
170
+ y1 = max(box1[1], box2[1])
171
+ x2 = min(box1[2], box2[2])
172
+ y2 = min(box1[3], box2[3])
173
+ return max(0, x2 - x1) * max(0, y2 - y1)
174
+
175
+ def IoU(box1, box2):
176
+ intersection = intersection_area(box1, box2)
177
+ union = box_area(box1) + box_area(box2) - intersection + 1e-6
178
+ if box_area(box1) > 0 and box_area(box2) > 0:
179
+ ratio1 = intersection / box_area(box1)
180
+ ratio2 = intersection / box_area(box2)
181
+ else:
182
+ ratio1, ratio2 = 0, 0
183
+ return max(intersection / union, ratio1, ratio2)
184
+
185
+ boxes = boxes.tolist()
186
+ filtered_boxes = []
187
+ if ocr_bbox:
188
+ filtered_boxes.extend(ocr_bbox)
189
+ # print('ocr_bbox!!!', ocr_bbox)
190
+ for i, box1 in enumerate(boxes):
191
+ # if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
192
+ is_valid_box = True
193
+ for j, box2 in enumerate(boxes):
194
+ if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
195
+ is_valid_box = False
196
+ break
197
+ if is_valid_box:
198
+ # add the following 2 lines to include ocr bbox
199
+ if ocr_bbox:
200
+ if not any(IoU(box1, box3) > iou_threshold for k, box3 in enumerate(ocr_bbox)):
201
+ filtered_boxes.append(box1)
202
+ else:
203
+ filtered_boxes.append(box1)
204
+ return torch.tensor(filtered_boxes)
205
+
206
+ def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
207
+ transform = T.Compose(
208
+ [
209
+ T.RandomResize([800], max_size=1333),
210
+ T.ToTensor(),
211
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
212
+ ]
213
+ )
214
+ image_source = Image.open(image_path).convert("RGB")
215
+ image = np.asarray(image_source)
216
+ image_transformed, _ = transform(image_source, None)
217
+ return image, image_transformed
218
+
219
+
220
+ def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
221
+ text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
222
+ """
223
+ This function annotates an image with bounding boxes and labels.
224
+
225
+ Parameters:
226
+ image_source (np.ndarray): The source image to be annotated.
227
+ boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
228
+ logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
229
+ phrases (List[str]): A list of labels for each bounding box.
230
+ text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
231
+
232
+ Returns:
233
+ np.ndarray: The annotated image.
234
+ """
235
+ h, w, _ = image_source.shape
236
+ boxes = boxes * torch.Tensor([w, h, w, h])
237
+ xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
238
+ xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
239
+ detections = sv.Detections(xyxy=xyxy)
240
+
241
+ labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
242
+
243
+ from util.box_annotator import BoxAnnotator
244
+ box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
245
+ annotated_frame = image_source.copy()
246
+ annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
247
+
248
+ label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
249
+ return annotated_frame, label_coordinates
250
+
251
+
252
+ def predict(model, image, caption, box_threshold, text_threshold):
253
+ """ Use huggingface model to replace the original model
254
+ """
255
+ model, processor = model['model'], model['processor']
256
+ device = model.device
257
+
258
+ inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
259
+ with torch.no_grad():
260
+ outputs = model(**inputs)
261
+
262
+ results = processor.post_process_grounded_object_detection(
263
+ outputs,
264
+ inputs.input_ids,
265
+ box_threshold=box_threshold, # 0.4,
266
+ text_threshold=text_threshold, # 0.3,
267
+ target_sizes=[image.size[::-1]]
268
+ )[0]
269
+ boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
270
+ return boxes, logits, phrases
271
+
272
+
273
+ def predict_yolo(model, image_path, box_threshold):
274
+ """ Use huggingface model to replace the original model
275
+ """
276
+ # model = model['model']
277
+
278
+ result = model.predict(
279
+ source=image_path,
280
+ conf=box_threshold,
281
+ # iou=0.5, # default 0.7
282
+ )
283
+ boxes = result[0].boxes.xyxy#.tolist() # in pixel space
284
+ conf = result[0].boxes.conf
285
+ phrases = [str(i) for i in range(len(boxes))]
286
+
287
+ return boxes, conf, phrases
288
+
289
+
290
+ def get_som_labeled_img(img_path, model=None, BOX_TRESHOLD = 0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None):
291
+ """ ocr_bbox: list of xyxy format bbox
292
+ """
293
+ TEXT_PROMPT = "clickable buttons on the screen"
294
+ # BOX_TRESHOLD = 0.02 # 0.05/0.02 for web and 0.1 for mobile
295
+ TEXT_TRESHOLD = 0.01 # 0.9 # 0.01
296
+ image_source = Image.open(img_path).convert("RGB")
297
+ w, h = image_source.size
298
+ # import pdb; pdb.set_trace()
299
+ if False: # TODO
300
+ xyxy, logits, phrases = predict(model=model, image=image_source, caption=TEXT_PROMPT, box_threshold=BOX_TRESHOLD, text_threshold=TEXT_TRESHOLD)
301
+ else:
302
+ xyxy, logits, phrases = predict_yolo(model=model, image_path=img_path, box_threshold=BOX_TRESHOLD)
303
+ xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
304
+ image_source = np.asarray(image_source)
305
+ phrases = [str(i) for i in range(len(phrases))]
306
+
307
+ # annotate the image with labels
308
+ h, w, _ = image_source.shape
309
+ if ocr_bbox:
310
+ ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
311
+ ocr_bbox=ocr_bbox.tolist()
312
+ else:
313
+ print('no ocr bbox!!!')
314
+ ocr_bbox = None
315
+ filtered_boxes = remove_overlap(boxes=xyxy, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox)
316
+
317
+ # get parsed icon local semantics
318
+ if use_local_semantics:
319
+ caption_model = caption_model_processor['model']
320
+ if 'phi3_v' in caption_model.config.model_type:
321
+ parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
322
+ else:
323
+ parsed_content_icon = get_parsed_content_icon(filtered_boxes, ocr_bbox, image_source, caption_model_processor, prompt=prompt)
324
+ ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
325
+ icon_start = len(ocr_text)
326
+ parsed_content_icon_ls = []
327
+ for i, txt in enumerate(parsed_content_icon):
328
+ parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
329
+ parsed_content_merged = ocr_text + parsed_content_icon_ls
330
+ else:
331
+ ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
332
+ parsed_content_merged = ocr_text
333
+
334
+ filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
335
+
336
+ phrases = [i for i in range(len(filtered_boxes))]
337
+
338
+ # draw boxes
339
+ if draw_bbox_config:
340
+ annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
341
+ else:
342
+ annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
343
+
344
+ pil_img = Image.fromarray(annotated_frame)
345
+ buffered = io.BytesIO()
346
+ pil_img.save(buffered, format="PNG")
347
+ encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
348
+ if output_coord_in_ratio:
349
+ # h, w, _ = image_source.shape
350
+ label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
351
+ assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
352
+
353
+ return encoded_image, label_coordinates, parsed_content_merged
354
+
355
+
356
+ def get_xywh(input):
357
+ x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
358
+ x, y, w, h = int(x), int(y), int(w), int(h)
359
+ return x, y, w, h
360
+
361
+ def get_xyxy(input):
362
+ x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
363
+ x, y, xp, yp = int(x), int(y), int(xp), int(yp)
364
+ return x, y, xp, yp
365
+
366
+ def get_xywh_yolo(input):
367
+ x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
368
+ x, y, w, h = int(x), int(y), int(w), int(h)
369
+ return x, y, w, h
370
+
371
+
372
+
373
+ def check_ocr_box(image_path, display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None):
374
+ if easyocr_args is None:
375
+ easyocr_args = {}
376
+ result = reader.readtext(image_path, **easyocr_args)
377
+ is_goal_filtered = False
378
+ # print('goal filtering pred:', result[-5:])
379
+ coord = [item[0] for item in result]
380
+ text = [item[1] for item in result]
381
+ # read the image using cv2
382
+ if display_img:
383
+ opencv_img = cv2.imread(image_path)
384
+ opencv_img = cv2.cvtColor(opencv_img, cv2.COLOR_RGB2BGR)
385
+ bb = []
386
+ for item in coord:
387
+ x, y, a, b = get_xywh(item)
388
+ # print(x, y, a, b)
389
+ bb.append((x, y, a, b))
390
+ cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
391
+
392
+ # Display the image
393
+ plt.imshow(opencv_img)
394
+ else:
395
+ if output_bb_format == 'xywh':
396
+ bb = [get_xywh(item) for item in coord]
397
+ elif output_bb_format == 'xyxy':
398
+ bb = [get_xyxy(item) for item in coord]
399
+ # print('bounding box!!!', bb)
400
+ return (text, bb), is_goal_filtered
401
+
402
+
403
+
weights/convert_safetensor_to_pt.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from ultralytics.nn.tasks import DetectionModel
3
+ from safetensors.torch import load_file
4
+
5
+ tensor_dict = load_file("weights/icon_detect/model.safetensors")
6
+
7
+ model = DetectionModel('weights/icon_detect/model.yaml')
8
+ model.load_state_dict(tensor_dict)
9
+ torch.save({'model':model}, 'weights/icon_detect/best.pt')
weights/icon_caption_florence/config.json ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/Florence-2-base-ft",
3
+ "architectures": [
4
+ "Florence2ForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "microsoft/Florence-2-base-ft--configuration_florence2.Florence2Config",
8
+ "AutoModelForCausalLM": "microsoft/Florence-2-base-ft--modeling_florence2.Florence2ForConditionalGeneration"
9
+ },
10
+ "bos_token_id": 2,
11
+ "eos_token_id": 1,
12
+ "ignore_index": -100,
13
+ "is_encoder_decoder": true,
14
+ "model_type": "florence2",
15
+ "pad_token_id": 0,
16
+ "projection_dim": 768,
17
+ "text_config": {
18
+ "_name_or_path": "",
19
+ "activation_dropout": 0.1,
20
+ "activation_function": "gelu",
21
+ "add_bias_logits": false,
22
+ "add_cross_attention": false,
23
+ "add_final_layer_norm": false,
24
+ "architectures": null,
25
+ "attention_dropout": 0.1,
26
+ "bad_words_ids": null,
27
+ "begin_suppress_tokens": null,
28
+ "bos_token_id": 0,
29
+ "chunk_size_feed_forward": 0,
30
+ "classif_dropout": 0.1,
31
+ "classifier_dropout": 0.0,
32
+ "cross_attention_hidden_size": null,
33
+ "d_model": 768,
34
+ "decoder_attention_heads": 12,
35
+ "decoder_ffn_dim": 3072,
36
+ "decoder_layerdrop": 0.0,
37
+ "decoder_layers": 6,
38
+ "decoder_start_token_id": 2,
39
+ "diversity_penalty": 0.0,
40
+ "do_sample": false,
41
+ "dropout": 0.1,
42
+ "early_stopping": true,
43
+ "encoder_attention_heads": 12,
44
+ "encoder_ffn_dim": 3072,
45
+ "encoder_layerdrop": 0.0,
46
+ "encoder_layers": 6,
47
+ "encoder_no_repeat_ngram_size": 0,
48
+ "eos_token_id": 2,
49
+ "exponential_decay_length_penalty": null,
50
+ "finetuning_task": null,
51
+ "forced_bos_token_id": 0,
52
+ "forced_eos_token_id": 2,
53
+ "gradient_checkpointing": false,
54
+ "id2label": {
55
+ "0": "LABEL_0",
56
+ "1": "LABEL_1",
57
+ "2": "LABEL_2"
58
+ },
59
+ "init_std": 0.02,
60
+ "is_decoder": false,
61
+ "is_encoder_decoder": true,
62
+ "label2id": {
63
+ "LABEL_0": 0,
64
+ "LABEL_1": 1,
65
+ "LABEL_2": 2
66
+ },
67
+ "length_penalty": 1.0,
68
+ "max_length": 20,
69
+ "max_position_embeddings": 1024,
70
+ "min_length": 0,
71
+ "model_type": "florence2_language",
72
+ "no_repeat_ngram_size": 3,
73
+ "normalize_before": false,
74
+ "num_beam_groups": 1,
75
+ "num_beams": 3,
76
+ "num_hidden_layers": 6,
77
+ "num_return_sequences": 1,
78
+ "output_attentions": false,
79
+ "output_hidden_states": false,
80
+ "output_scores": false,
81
+ "pad_token_id": 1,
82
+ "prefix": null,
83
+ "problem_type": null,
84
+ "pruned_heads": {},
85
+ "remove_invalid_values": false,
86
+ "repetition_penalty": 1.0,
87
+ "return_dict": true,
88
+ "return_dict_in_generate": false,
89
+ "scale_embedding": false,
90
+ "sep_token_id": null,
91
+ "suppress_tokens": null,
92
+ "task_specific_params": null,
93
+ "temperature": 1.0,
94
+ "tf_legacy_loss": false,
95
+ "tie_encoder_decoder": false,
96
+ "tie_word_embeddings": true,
97
+ "tokenizer_class": null,
98
+ "top_k": 50,
99
+ "top_p": 1.0,
100
+ "torch_dtype": null,
101
+ "torchscript": false,
102
+ "typical_p": 1.0,
103
+ "use_bfloat16": false,
104
+ "use_cache": true,
105
+ "vocab_size": 51289
106
+ },
107
+ "torch_dtype": "float32",
108
+ "transformers_version": "4.40.2",
109
+ "vision_config": {
110
+ "_name_or_path": "",
111
+ "add_cross_attention": false,
112
+ "architectures": null,
113
+ "bad_words_ids": null,
114
+ "begin_suppress_tokens": null,
115
+ "bos_token_id": null,
116
+ "chunk_size_feed_forward": 0,
117
+ "cross_attention_hidden_size": null,
118
+ "decoder_start_token_id": null,
119
+ "depths": [
120
+ 1,
121
+ 1,
122
+ 9,
123
+ 1
124
+ ],
125
+ "dim_embed": [
126
+ 128,
127
+ 256,
128
+ 512,
129
+ 1024
130
+ ],
131
+ "diversity_penalty": 0.0,
132
+ "do_sample": false,
133
+ "drop_path_rate": 0.1,
134
+ "early_stopping": false,
135
+ "enable_checkpoint": false,
136
+ "encoder_no_repeat_ngram_size": 0,
137
+ "eos_token_id": null,
138
+ "exponential_decay_length_penalty": null,
139
+ "finetuning_task": null,
140
+ "forced_bos_token_id": null,
141
+ "forced_eos_token_id": null,
142
+ "id2label": {
143
+ "0": "LABEL_0",
144
+ "1": "LABEL_1"
145
+ },
146
+ "image_feature_source": [
147
+ "spatial_avg_pool",
148
+ "temporal_avg_pool"
149
+ ],
150
+ "image_pos_embed": {
151
+ "max_pos_embeddings": 50,
152
+ "type": "learned_abs_2d"
153
+ },
154
+ "is_decoder": false,
155
+ "is_encoder_decoder": false,
156
+ "label2id": {
157
+ "LABEL_0": 0,
158
+ "LABEL_1": 1
159
+ },
160
+ "length_penalty": 1.0,
161
+ "max_length": 20,
162
+ "min_length": 0,
163
+ "model_type": "davit",
164
+ "no_repeat_ngram_size": 0,
165
+ "num_beam_groups": 1,
166
+ "num_beams": 1,
167
+ "num_groups": [
168
+ 4,
169
+ 8,
170
+ 16,
171
+ 32
172
+ ],
173
+ "num_heads": [
174
+ 4,
175
+ 8,
176
+ 16,
177
+ 32
178
+ ],
179
+ "num_return_sequences": 1,
180
+ "output_attentions": false,
181
+ "output_hidden_states": false,
182
+ "output_scores": false,
183
+ "pad_token_id": null,
184
+ "patch_padding": [
185
+ 3,
186
+ 1,
187
+ 1,
188
+ 1
189
+ ],
190
+ "patch_prenorm": [
191
+ false,
192
+ true,
193
+ true,
194
+ true
195
+ ],
196
+ "patch_size": [
197
+ 7,
198
+ 3,
199
+ 3,
200
+ 3
201
+ ],
202
+ "patch_stride": [
203
+ 4,
204
+ 2,
205
+ 2,
206
+ 2
207
+ ],
208
+ "prefix": null,
209
+ "problem_type": null,
210
+ "projection_dim": 768,
211
+ "pruned_heads": {},
212
+ "remove_invalid_values": false,
213
+ "repetition_penalty": 1.0,
214
+ "return_dict": true,
215
+ "return_dict_in_generate": false,
216
+ "sep_token_id": null,
217
+ "suppress_tokens": null,
218
+ "task_specific_params": null,
219
+ "temperature": 1.0,
220
+ "tf_legacy_loss": false,
221
+ "tie_encoder_decoder": false,
222
+ "tie_word_embeddings": true,
223
+ "tokenizer_class": null,
224
+ "top_k": 50,
225
+ "top_p": 1.0,
226
+ "torch_dtype": null,
227
+ "torchscript": false,
228
+ "typical_p": 1.0,
229
+ "use_bfloat16": false,
230
+ "visual_temporal_embedding": {
231
+ "max_temporal_embeddings": 100,
232
+ "type": "COSINE"
233
+ },
234
+ "window_size": 12
235
+ },
236
+ "vocab_size": 51289
237
+ }
weights/icon_caption_florence/generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "decoder_start_token_id": 2,
5
+ "early_stopping": true,
6
+ "eos_token_id": 1,
7
+ "forced_bos_token_id": 0,
8
+ "forced_eos_token_id": 2,
9
+ "no_repeat_ngram_size": 3,
10
+ "num_beams": 3,
11
+ "pad_token_id": 0,
12
+ "transformers_version": "4.40.2"
13
+ }
weights/icon_caption_florence/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0d7a6bedf8c6dbabe7d40b9f78ada36e78c1a93617506bc06a93279a78dfb14
3
+ size 1083916964
weights/icon_detect/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84caa6c7e0607d7d6edddb46f2affd0d0d86ddf34e71fbcce7b4ba461bd97574
3
+ size 6075790
weights/icon_detect/model.yaml ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backbone:
2
+ - - -1
3
+ - 1
4
+ - Conv
5
+ - - 64
6
+ - 3
7
+ - 2
8
+ - - -1
9
+ - 1
10
+ - Conv
11
+ - - 128
12
+ - 3
13
+ - 2
14
+ - - -1
15
+ - 3
16
+ - C2f
17
+ - - 128
18
+ - true
19
+ - - -1
20
+ - 1
21
+ - Conv
22
+ - - 256
23
+ - 3
24
+ - 2
25
+ - - -1
26
+ - 6
27
+ - C2f
28
+ - - 256
29
+ - true
30
+ - - -1
31
+ - 1
32
+ - Conv
33
+ - - 512
34
+ - 3
35
+ - 2
36
+ - - -1
37
+ - 6
38
+ - C2f
39
+ - - 512
40
+ - true
41
+ - - -1
42
+ - 1
43
+ - Conv
44
+ - - 1024
45
+ - 3
46
+ - 2
47
+ - - -1
48
+ - 3
49
+ - C2f
50
+ - - 1024
51
+ - true
52
+ - - -1
53
+ - 1
54
+ - SPPF
55
+ - - 1024
56
+ - 5
57
+ ch: 3
58
+ depth_multiple: 0.33
59
+ head:
60
+ - - -1
61
+ - 1
62
+ - nn.Upsample
63
+ - - None
64
+ - 2
65
+ - nearest
66
+ - - - -1
67
+ - 6
68
+ - 1
69
+ - Concat
70
+ - - 1
71
+ - - -1
72
+ - 3
73
+ - C2f
74
+ - - 512
75
+ - - -1
76
+ - 1
77
+ - nn.Upsample
78
+ - - None
79
+ - 2
80
+ - nearest
81
+ - - - -1
82
+ - 4
83
+ - 1
84
+ - Concat
85
+ - - 1
86
+ - - -1
87
+ - 3
88
+ - C2f
89
+ - - 256
90
+ - - -1
91
+ - 1
92
+ - Conv
93
+ - - 256
94
+ - 3
95
+ - 2
96
+ - - - -1
97
+ - 12
98
+ - 1
99
+ - Concat
100
+ - - 1
101
+ - - -1
102
+ - 3
103
+ - C2f
104
+ - - 512
105
+ - - -1
106
+ - 1
107
+ - Conv
108
+ - - 512
109
+ - 3
110
+ - 2
111
+ - - - -1
112
+ - 9
113
+ - 1
114
+ - Concat
115
+ - - 1
116
+ - - -1
117
+ - 3
118
+ - C2f
119
+ - - 1024
120
+ - - - 15
121
+ - 18
122
+ - 21
123
+ - 1
124
+ - Detect
125
+ - - nc
126
+ nc: 1
127
+ width_multiple: 0.25