# Copyright 2020 Nagoya University (Tomoki Hayashi) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) # Adapted by Florian Lux 2021 import torch import torch.nn.functional as F from Architectures.GeneralLayers.STFT import STFT from Utility.utils import pad_list class EnergyCalculator(torch.nn.Module): def __init__(self, fs=16000, n_fft=1024, win_length=None, hop_length=256, window="hann", center=True, normalized=False, onesided=True, use_token_averaged_energy=True, reduction_factor=1): super().__init__() self.fs = fs self.n_fft = n_fft self.hop_length = hop_length self.win_length = win_length self.window = window self.use_token_averaged_energy = use_token_averaged_energy if use_token_averaged_energy: assert reduction_factor >= 1 self.reduction_factor = reduction_factor self.stft = STFT(n_fft=n_fft, win_length=win_length, hop_length=hop_length, window=window, center=center, normalized=normalized, onesided=onesided) def output_size(self): return 1 def get_parameters(self): return dict(fs=self.fs, n_fft=self.n_fft, hop_length=self.hop_length, window=self.window, win_length=self.win_length, center=self.stft.center, normalized=self.stft.normalized, use_token_averaged_energy=self.use_token_averaged_energy, reduction_factor=self.reduction_factor) def forward(self, input_waves, input_waves_lengths=None, feats_lengths=None, durations=None, durations_lengths=None, norm_by_average=True, text=None): # If not provided, we assume that the inputs have the same length if input_waves_lengths is None: input_waves_lengths = (input_waves.new_ones(input_waves.shape[0], dtype=torch.long) * input_waves.shape[1]) # Domain-conversion: e.g. Stft: time -> time-freq input_stft, energy_lengths = self.stft(input_waves, input_waves_lengths) assert input_stft.dim() >= 4, input_stft.shape assert input_stft.shape[-1] == 2, input_stft.shape # input_stft: (..., F, 2) -> (..., F) input_power = input_stft[..., 0] ** 2 + input_stft[..., 1] ** 2 # sum over frequency (B, N, F) -> (B, N) energy = torch.sqrt(torch.clamp(input_power.sum(dim=2), min=1.0e-10)) # (Optional): Adjust length to match with the features if feats_lengths is not None: energy = [self._adjust_num_frames(e[:el].view(-1), fl) for e, el, fl in zip(energy, energy_lengths, feats_lengths)] energy_lengths = feats_lengths # (Optional): Average by duration to calculate token-wise energy if self.use_token_averaged_energy: energy = [self._average_by_duration(e[:el].view(-1), d, text) for e, el, d in zip(energy, energy_lengths, durations)] energy_lengths = durations_lengths # Padding if isinstance(energy, list): energy = pad_list(energy, 0.0) if norm_by_average: average = energy[0][energy[0] != 0.0].mean() energy = energy / average # Return with the shape (B, T, 1) return energy.unsqueeze(-1), energy_lengths def _average_by_duration(self, x, d, text=None): d_cumsum = F.pad(d.cumsum(dim=0), (1, 0)) x_avg = [x[start:end].mean() if len(x[start:end]) != 0 else x.new_tensor(0.0) for start, end in zip(d_cumsum[:-1], d_cumsum[1:])] # find tokens that are not phoneme and set energy to 0 # while this makes sense, it make sit harder to model, so we leave this out # if text is not None: # for i, vector in enumerate(text): # if vector[get_feature_to_index_lookup()["phoneme"]] == 0: # x_avg[i] = torch.tensor(0.0, device=x.device) return torch.stack(x_avg) @staticmethod def _adjust_num_frames(x, num_frames): if num_frames > len(x): x = F.pad(x, (0, num_frames - len(x))) elif num_frames < len(x): x = x[:num_frames] return x