Spaces:
Running
Running
from .basic_layer import * | |
class P2CGen(nn.Module): | |
def __init__(self, input_dim, output_dim, dim, n_downsample, n_res, activ='relu', pad_type='reflect'): | |
super(P2CGen, self).__init__() | |
self.RGBEnc = RGBEncoder(input_dim, dim, n_downsample, n_res, "in", activ, pad_type=pad_type) | |
self.RGBDec = RGBDecoder(self.RGBEnc.output_dim, output_dim, n_downsample, n_res, res_norm='in', | |
activ=activ, pad_type=pad_type) | |
def forward(self, x): | |
x = self.RGBEnc(x) | |
# print("encoder->>", x.shape) | |
x = self.RGBDec(x) | |
# print(x_small.shape) | |
# print(x_middle.shape) | |
# print(x_big.shape) | |
#return y_small, y_middle, y_big | |
return x | |
class RGBEncoder(nn.Module): | |
def __init__(self, input_dim, dim, n_downsample, n_res, norm, activ, pad_type): | |
super(RGBEncoder, self).__init__() | |
self.model = [] | |
self.model += [ConvBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)] | |
# downsampling blocks | |
for i in range(n_downsample): | |
self.model += [ConvBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)] | |
dim *= 2 | |
# residual blocks | |
self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)] | |
self.model = nn.Sequential(*self.model) | |
self.output_dim = dim | |
def forward(self, x): | |
return self.model(x) | |
class RGBDecoder(nn.Module): | |
def __init__(self, dim, output_dim, n_upsample, n_res, res_norm, activ='relu', pad_type='zero'): | |
super(RGBDecoder, self).__init__() | |
# self.model = [] | |
# # AdaIN residual blocks | |
# self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)] | |
# # upsampling blocks | |
# for i in range(n_upsample): | |
# self.model += [nn.Upsample(scale_factor=2, mode='nearest'), | |
# ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)] | |
# dim //= 2 | |
# # use reflection padding in the last conv layer | |
# self.model += [ConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)] | |
# self.model = nn.Sequential(*self.model) | |
self.Res_Blocks = ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type) | |
self.upsample_block1 = nn.Upsample(scale_factor=2, mode='nearest') | |
self.conv_1 = ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type) | |
dim //= 2 | |
self.upsample_block2 = nn.Upsample(scale_factor=2, mode='nearest') | |
self.conv_2 = ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type) | |
dim //= 2 | |
self.conv_3 = ConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type) | |
def forward(self, x): | |
x = self.Res_Blocks(x) | |
# print(x.shape) | |
x = self.upsample_block1(x) | |
# print(x.shape) | |
x = self.conv_1(x) | |
# print(x_small.shape) | |
x = self.upsample_block2(x) | |
# print(x.shape) | |
x = self.conv_2(x) | |
# print(x_middle.shape) | |
x = self.conv_3(x) | |
# print(x_big.shape) | |
return x | |