File size: 11,985 Bytes
2c9c37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
791b9ee
2c9c37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from .basic_layer import *
import torchvision.models as models
import os



class AliasNet(nn.Module):
    def __init__(self, input_dim, output_dim, dim, n_downsample, n_res, activ='relu', pad_type='reflect'):
        super(AliasNet, self).__init__()
        self.RGBEnc = AliasRGBEncoder(input_dim, dim, n_downsample, n_res, "in", activ, pad_type=pad_type)
        self.RGBDec = AliasRGBDecoder(self.RGBEnc.output_dim, output_dim, n_downsample, n_res, res_norm='in',
                                      activ=activ, pad_type=pad_type)

    def forward(self, x):
        x = self.RGBEnc(x)
        x = self.RGBDec(x)
        return x


class AliasRGBEncoder(nn.Module):
    def __init__(self, input_dim, dim, n_downsample, n_res, norm, activ, pad_type):
        super(AliasRGBEncoder, self).__init__()
        self.model = []
        self.model += [AliasConvBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)]
        # downsampling blocks
        for i in range(n_downsample):
            self.model += [AliasConvBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
            dim *= 2
        # residual blocks
        self.model += [AliasResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)
        self.output_dim = dim

    def forward(self, x):
        return self.model(x)


class AliasRGBDecoder(nn.Module):
    def __init__(self, dim, output_dim, n_upsample, n_res, res_norm, activ='relu', pad_type='zero'):
        super(AliasRGBDecoder, self).__init__()
        # self.model = []
        # # AdaIN residual blocks
        # self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)]
        # # upsampling blocks
        # for i in range(n_upsample):
        #     self.model += [nn.Upsample(scale_factor=2, mode='nearest'),
        #                    ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)]
        #     dim //= 2
        # # use reflection padding in the last conv layer
        # self.model += [ConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)]
        # self.model = nn.Sequential(*self.model)
        self.Res_Blocks = AliasResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)
        self.upsample_block1 = nn.Upsample(scale_factor=2, mode='nearest')
        self.conv_1 = AliasConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)
        dim //= 2
        self.upsample_block2 = nn.Upsample(scale_factor=2, mode='nearest')
        self.conv_2 = AliasConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)
        dim //= 2
        self.conv_3 = AliasConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)

    def forward(self, x):
        x = self.Res_Blocks(x)
        # print(x.shape)
        x = self.upsample_block1(x)
        # print(x.shape)
        x = self.conv_1(x)
        # print(x_small.shape)
        x = self.upsample_block2(x)
        # print(x.shape)
        x = self.conv_2(x)
        # print(x_middle.shape)
        x = self.conv_3(x)
        # print(x_big.shape)
        return x


class C2PGen(nn.Module):
    def __init__(self, input_dim, output_dim, dim, n_downsample, n_res, style_dim, mlp_dim, activ='relu', pad_type='reflect'):
        super(C2PGen, self).__init__()
        self.PBEnc = PixelBlockEncoder(input_dim, dim, style_dim, norm='none', activ=activ, pad_type=pad_type)
        self.RGBEnc = RGBEncoder(input_dim, dim, n_downsample, n_res, "in", activ, pad_type=pad_type)
        self.RGBDec = RGBDecoder(self.RGBEnc.output_dim, output_dim, n_downsample, n_res, res_norm='adain',
                                      activ=activ, pad_type=pad_type)
        self.MLP = MLP(style_dim, 2048, mlp_dim, 3, norm='none', activ=activ)

    def forward(self, clipart, pixelart, s=1):
        feature = self.RGBEnc(clipart)
        code = self.PBEnc(pixelart)
        result, cellcode = self.fuse(feature, code, s)
        return result#, cellcode   #return cellcode when visualizing the cell size code

    def fuse(self, content, style_code, s=1):
        #print("MLP input:code's shape:", style_code.shape)
        adain_params = self.MLP(style_code) * s # [batch,2048]
        #print("MLP output:adain_params's shape", adain_params.shape)
        #self.assign_adain_params(adain_params, self.RGBDec)
        images = self.RGBDec(content, adain_params)
        return images, adain_params

    def assign_adain_params(self, adain_params, model):
        # assign the adain_params to the AdaIN layers in model
        for m in model.modules():
            if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
                mean = adain_params[:, :m.num_features]
                std = adain_params[:, m.num_features:2 * m.num_features]
                m.bias = mean.contiguous().view(-1)
                m.weight = std.contiguous().view(-1)
                if adain_params.size(1) > 2 * m.num_features:
                    adain_params = adain_params[:, 2 * m.num_features:]

    def get_num_adain_params(self, model):
        # return the number of AdaIN parameters needed by the model
        num_adain_params = 0
        for m in model.modules():
            if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
                num_adain_params += 2 * m.num_features
        return num_adain_params


class PixelBlockEncoder(nn.Module):
    def __init__(self, input_dim, dim, style_dim, norm, activ, pad_type):
        super(PixelBlockEncoder, self).__init__()
        vgg19 = models.vgg.vgg19()
        vgg19.classifier._modules['6'] = nn.Linear(4096, 7, bias=True)
        vgg19.load_state_dict(torch.load('./pixelart_vgg19.pth' if not os.environ['PIX_MODEL'] else os.environ['PIX_MODEL'], map_location=torch.device('cpu'), weights_only=True))
        self.vgg = vgg19.features
        for p in self.vgg.parameters():
            p.requires_grad = False
        # vgg19 = models.vgg.vgg19(pretrained=False)
        # vgg19.load_state_dict(torch.load('./vgg.pth'))
        # self.vgg = vgg19.features
        # for p in self.vgg.parameters():
        #     p.requires_grad = False


        self.conv1 = ConvBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)  # 3->64,concat
        dim = dim * 2
        self.conv2 = ConvBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)  # 128->128
        dim = dim * 2
        self.conv3 = ConvBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)  # 256->256
        dim = dim * 2
        self.conv4 = ConvBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)  # 512->512
        dim = dim * 2

        self.model = []
        self.model += [nn.AdaptiveAvgPool2d(1)]  # global average pooling
        self.model += [nn.Conv2d(dim, style_dim, 1, 1, 0)]
        self.model = nn.Sequential(*self.model)
        self.output_dim = dim

    def get_features(self, image, model, layers=None):
        if layers is None:
            layers = {'0': 'conv1_1', '5': 'conv2_1', '10': 'conv3_1', '19': 'conv4_1'}
        features = {}
        x = image
        # model._modules is a dictionary holding each module in the model
        for name, layer in model._modules.items():
            x = layer(x)
            if name in layers:
                features[layers[name]] = x
        return features

    def componet_enc(self, x):
        # x [16,3,256,256]
        # factor_img [16,7,256,256]
        vgg_aux = self.get_features(x, self.vgg)  # x是3通道灰度图
        #x = torch.cat([x, factor_img], dim=1)  # [16,3+7,256,256]
        x = self.conv1(x) # 64 256 256
        x = torch.cat([x, vgg_aux['conv1_1']], dim=1)  # 128 256 256
        x = self.conv2(x)  #  128 128 128
        x = torch.cat([x, vgg_aux['conv2_1']], dim=1)  # 256 128 128
        x = self.conv3(x)  # 256 64 64
        x = torch.cat([x, vgg_aux['conv3_1']], dim=1)  # 512 64 64
        x = self.conv4(x)  # 512 32 32
        x = torch.cat([x, vgg_aux['conv4_1']], dim=1)  # 1024 32 32
        x = self.model(x)
        return x

    def forward(self, x):
        code = self.componet_enc(x)
        return code

class RGBEncoder(nn.Module):
    def __init__(self, input_dim, dim, n_downsample, n_res, norm, activ, pad_type):
        super(RGBEncoder, self).__init__()
        self.model = []
        self.model += [ConvBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)]
        # downsampling blocks
        for i in range(n_downsample):
            self.model += [ConvBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
            dim *= 2
        # residual blocks
        self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)
        self.output_dim = dim

    def forward(self, x):
        return self.model(x)


class RGBDecoder(nn.Module):
    def __init__(self, dim, output_dim, n_upsample, n_res, res_norm, activ='relu', pad_type='zero'):
        super(RGBDecoder, self).__init__()
        # self.model = []
        # # AdaIN residual blocks
        # self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)]
        # # upsampling blocks
        # for i in range(n_upsample):
        #     self.model += [nn.Upsample(scale_factor=2, mode='nearest'),
        #                    ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)]
        #     dim //= 2
        # # use reflection padding in the last conv layer
        # self.model += [ConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)]
        # self.model = nn.Sequential(*self.model)
        #self.Res_Blocks = ModulationResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)
        self.mod_conv_1 = ModulationConvBlock(256,256,3)
        self.mod_conv_2 = ModulationConvBlock(256,256,3)
        self.mod_conv_3 = ModulationConvBlock(256,256,3)
        self.mod_conv_4 = ModulationConvBlock(256,256,3)
        self.mod_conv_5 = ModulationConvBlock(256,256,3)
        self.mod_conv_6 = ModulationConvBlock(256,256,3)
        self.mod_conv_7 = ModulationConvBlock(256,256,3)
        self.mod_conv_8 = ModulationConvBlock(256,256,3)
        self.upsample_block1 = nn.Upsample(scale_factor=2, mode='nearest')
        self.conv_1 = ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)
        dim //= 2
        self.upsample_block2 = nn.Upsample(scale_factor=2, mode='nearest')
        self.conv_2 = ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)
        dim //= 2
        self.conv_3 = ConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)

    # def forward(self, x):
    #     residual = x
    #     out = self.model(x)
    #     out += residual
    #     return out
    def forward(self, x, code):
        residual = x
        x = self.mod_conv_1(x, code[:, :256])
        x = self.mod_conv_2(x, code[:, 256*1:256*2])
        x += residual
        residual = x
        x = self.mod_conv_2(x, code[:, 256*2:256 * 3])
        x = self.mod_conv_2(x, code[:, 256*3:256 * 4])
        x += residual
        residual =x
        x = self.mod_conv_2(x, code[:, 256*4:256 * 5])
        x = self.mod_conv_2(x, code[:, 256*5:256 * 6])
        x += residual
        residual = x
        x = self.mod_conv_2(x, code[:, 256*6:256 * 7])
        x = self.mod_conv_2(x, code[:, 256*7:256 * 8])
        x += residual
        # print(x.shape)
        x = self.upsample_block1(x)
        # print(x.shape)
        x = self.conv_1(x)
        # print(x_small.shape)
        x = self.upsample_block2(x)
        # print(x.shape)
        x = self.conv_2(x)
        # print(x_middle.shape)
        x = self.conv_3(x)
        # print(x_big.shape)
        return x