Spaces:
Running
Running
File size: 11,985 Bytes
2c9c37b 791b9ee 2c9c37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
from .basic_layer import *
import torchvision.models as models
import os
class AliasNet(nn.Module):
def __init__(self, input_dim, output_dim, dim, n_downsample, n_res, activ='relu', pad_type='reflect'):
super(AliasNet, self).__init__()
self.RGBEnc = AliasRGBEncoder(input_dim, dim, n_downsample, n_res, "in", activ, pad_type=pad_type)
self.RGBDec = AliasRGBDecoder(self.RGBEnc.output_dim, output_dim, n_downsample, n_res, res_norm='in',
activ=activ, pad_type=pad_type)
def forward(self, x):
x = self.RGBEnc(x)
x = self.RGBDec(x)
return x
class AliasRGBEncoder(nn.Module):
def __init__(self, input_dim, dim, n_downsample, n_res, norm, activ, pad_type):
super(AliasRGBEncoder, self).__init__()
self.model = []
self.model += [AliasConvBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)]
# downsampling blocks
for i in range(n_downsample):
self.model += [AliasConvBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
dim *= 2
# residual blocks
self.model += [AliasResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
self.output_dim = dim
def forward(self, x):
return self.model(x)
class AliasRGBDecoder(nn.Module):
def __init__(self, dim, output_dim, n_upsample, n_res, res_norm, activ='relu', pad_type='zero'):
super(AliasRGBDecoder, self).__init__()
# self.model = []
# # AdaIN residual blocks
# self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)]
# # upsampling blocks
# for i in range(n_upsample):
# self.model += [nn.Upsample(scale_factor=2, mode='nearest'),
# ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)]
# dim //= 2
# # use reflection padding in the last conv layer
# self.model += [ConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)]
# self.model = nn.Sequential(*self.model)
self.Res_Blocks = AliasResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)
self.upsample_block1 = nn.Upsample(scale_factor=2, mode='nearest')
self.conv_1 = AliasConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)
dim //= 2
self.upsample_block2 = nn.Upsample(scale_factor=2, mode='nearest')
self.conv_2 = AliasConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)
dim //= 2
self.conv_3 = AliasConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)
def forward(self, x):
x = self.Res_Blocks(x)
# print(x.shape)
x = self.upsample_block1(x)
# print(x.shape)
x = self.conv_1(x)
# print(x_small.shape)
x = self.upsample_block2(x)
# print(x.shape)
x = self.conv_2(x)
# print(x_middle.shape)
x = self.conv_3(x)
# print(x_big.shape)
return x
class C2PGen(nn.Module):
def __init__(self, input_dim, output_dim, dim, n_downsample, n_res, style_dim, mlp_dim, activ='relu', pad_type='reflect'):
super(C2PGen, self).__init__()
self.PBEnc = PixelBlockEncoder(input_dim, dim, style_dim, norm='none', activ=activ, pad_type=pad_type)
self.RGBEnc = RGBEncoder(input_dim, dim, n_downsample, n_res, "in", activ, pad_type=pad_type)
self.RGBDec = RGBDecoder(self.RGBEnc.output_dim, output_dim, n_downsample, n_res, res_norm='adain',
activ=activ, pad_type=pad_type)
self.MLP = MLP(style_dim, 2048, mlp_dim, 3, norm='none', activ=activ)
def forward(self, clipart, pixelart, s=1):
feature = self.RGBEnc(clipart)
code = self.PBEnc(pixelart)
result, cellcode = self.fuse(feature, code, s)
return result#, cellcode #return cellcode when visualizing the cell size code
def fuse(self, content, style_code, s=1):
#print("MLP input:code's shape:", style_code.shape)
adain_params = self.MLP(style_code) * s # [batch,2048]
#print("MLP output:adain_params's shape", adain_params.shape)
#self.assign_adain_params(adain_params, self.RGBDec)
images = self.RGBDec(content, adain_params)
return images, adain_params
def assign_adain_params(self, adain_params, model):
# assign the adain_params to the AdaIN layers in model
for m in model.modules():
if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
mean = adain_params[:, :m.num_features]
std = adain_params[:, m.num_features:2 * m.num_features]
m.bias = mean.contiguous().view(-1)
m.weight = std.contiguous().view(-1)
if adain_params.size(1) > 2 * m.num_features:
adain_params = adain_params[:, 2 * m.num_features:]
def get_num_adain_params(self, model):
# return the number of AdaIN parameters needed by the model
num_adain_params = 0
for m in model.modules():
if m.__class__.__name__ == "AdaptiveInstanceNorm2d":
num_adain_params += 2 * m.num_features
return num_adain_params
class PixelBlockEncoder(nn.Module):
def __init__(self, input_dim, dim, style_dim, norm, activ, pad_type):
super(PixelBlockEncoder, self).__init__()
vgg19 = models.vgg.vgg19()
vgg19.classifier._modules['6'] = nn.Linear(4096, 7, bias=True)
vgg19.load_state_dict(torch.load('./pixelart_vgg19.pth' if not os.environ['PIX_MODEL'] else os.environ['PIX_MODEL'], map_location=torch.device('cpu'), weights_only=True))
self.vgg = vgg19.features
for p in self.vgg.parameters():
p.requires_grad = False
# vgg19 = models.vgg.vgg19(pretrained=False)
# vgg19.load_state_dict(torch.load('./vgg.pth'))
# self.vgg = vgg19.features
# for p in self.vgg.parameters():
# p.requires_grad = False
self.conv1 = ConvBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type) # 3->64,concat
dim = dim * 2
self.conv2 = ConvBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type) # 128->128
dim = dim * 2
self.conv3 = ConvBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type) # 256->256
dim = dim * 2
self.conv4 = ConvBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type) # 512->512
dim = dim * 2
self.model = []
self.model += [nn.AdaptiveAvgPool2d(1)] # global average pooling
self.model += [nn.Conv2d(dim, style_dim, 1, 1, 0)]
self.model = nn.Sequential(*self.model)
self.output_dim = dim
def get_features(self, image, model, layers=None):
if layers is None:
layers = {'0': 'conv1_1', '5': 'conv2_1', '10': 'conv3_1', '19': 'conv4_1'}
features = {}
x = image
# model._modules is a dictionary holding each module in the model
for name, layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x
return features
def componet_enc(self, x):
# x [16,3,256,256]
# factor_img [16,7,256,256]
vgg_aux = self.get_features(x, self.vgg) # x是3通道灰度图
#x = torch.cat([x, factor_img], dim=1) # [16,3+7,256,256]
x = self.conv1(x) # 64 256 256
x = torch.cat([x, vgg_aux['conv1_1']], dim=1) # 128 256 256
x = self.conv2(x) # 128 128 128
x = torch.cat([x, vgg_aux['conv2_1']], dim=1) # 256 128 128
x = self.conv3(x) # 256 64 64
x = torch.cat([x, vgg_aux['conv3_1']], dim=1) # 512 64 64
x = self.conv4(x) # 512 32 32
x = torch.cat([x, vgg_aux['conv4_1']], dim=1) # 1024 32 32
x = self.model(x)
return x
def forward(self, x):
code = self.componet_enc(x)
return code
class RGBEncoder(nn.Module):
def __init__(self, input_dim, dim, n_downsample, n_res, norm, activ, pad_type):
super(RGBEncoder, self).__init__()
self.model = []
self.model += [ConvBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)]
# downsampling blocks
for i in range(n_downsample):
self.model += [ConvBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)]
dim *= 2
# residual blocks
self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
self.output_dim = dim
def forward(self, x):
return self.model(x)
class RGBDecoder(nn.Module):
def __init__(self, dim, output_dim, n_upsample, n_res, res_norm, activ='relu', pad_type='zero'):
super(RGBDecoder, self).__init__()
# self.model = []
# # AdaIN residual blocks
# self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)]
# # upsampling blocks
# for i in range(n_upsample):
# self.model += [nn.Upsample(scale_factor=2, mode='nearest'),
# ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)]
# dim //= 2
# # use reflection padding in the last conv layer
# self.model += [ConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)]
# self.model = nn.Sequential(*self.model)
#self.Res_Blocks = ModulationResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)
self.mod_conv_1 = ModulationConvBlock(256,256,3)
self.mod_conv_2 = ModulationConvBlock(256,256,3)
self.mod_conv_3 = ModulationConvBlock(256,256,3)
self.mod_conv_4 = ModulationConvBlock(256,256,3)
self.mod_conv_5 = ModulationConvBlock(256,256,3)
self.mod_conv_6 = ModulationConvBlock(256,256,3)
self.mod_conv_7 = ModulationConvBlock(256,256,3)
self.mod_conv_8 = ModulationConvBlock(256,256,3)
self.upsample_block1 = nn.Upsample(scale_factor=2, mode='nearest')
self.conv_1 = ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)
dim //= 2
self.upsample_block2 = nn.Upsample(scale_factor=2, mode='nearest')
self.conv_2 = ConvBlock(dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type=pad_type)
dim //= 2
self.conv_3 = ConvBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)
# def forward(self, x):
# residual = x
# out = self.model(x)
# out += residual
# return out
def forward(self, x, code):
residual = x
x = self.mod_conv_1(x, code[:, :256])
x = self.mod_conv_2(x, code[:, 256*1:256*2])
x += residual
residual = x
x = self.mod_conv_2(x, code[:, 256*2:256 * 3])
x = self.mod_conv_2(x, code[:, 256*3:256 * 4])
x += residual
residual =x
x = self.mod_conv_2(x, code[:, 256*4:256 * 5])
x = self.mod_conv_2(x, code[:, 256*5:256 * 6])
x += residual
residual = x
x = self.mod_conv_2(x, code[:, 256*6:256 * 7])
x = self.mod_conv_2(x, code[:, 256*7:256 * 8])
x += residual
# print(x.shape)
x = self.upsample_block1(x)
# print(x.shape)
x = self.conv_1(x)
# print(x_small.shape)
x = self.upsample_block2(x)
# print(x.shape)
x = self.conv_2(x)
# print(x_middle.shape)
x = self.conv_3(x)
# print(x_big.shape)
return x
|