File size: 2,780 Bytes
12c866f
2c9c37b
 
 
 
 
 
12c866f
03fe70d
12c866f
2c9c37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03fe70d
2c9c37b
03fe70d
2c9c37b
03fe70d
 
 
 
 
 
 
 
 
2c9c37b
 
 
 
 
 
 
 
 
 
 
 
03fe70d
2c9c37b
 
 
 
 
 
 
 
 
f94be0a
2c9c37b
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import functools
from pixelization import Model
import torch
import argparse
import huggingface_hub
import os

# TOKEN = os.environ['TOKEN']

def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--theme', type=str, default='default')
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()

def main():
  args = parse_args()


  # DL MODEL
  # PIX_MODEL
  # os.environ['PIX_MODEL'] = huggingface_hub.hf_hub_download("NoCrypt/pixelization_models", "pixelart_vgg19.pth", token=TOKEN);
  # # NET_MODEL
  # os.environ['NET_MODEL'] = huggingface_hub.hf_hub_download("NoCrypt/pixelization_models", "160_net_G_A.pth", token=TOKEN);
  # # ALIAS_MODEL
  # os.environ['ALIAS_MODEL'] = huggingface_hub.hf_hub_download("NoCrypt/pixelization_models", "alias_net.pth", token=TOKEN);
  
  # For local testing
  # PIX_MODEL
  os.environ['PIX_MODEL'] = "pixelart_vgg19.pth"
  # NET_MODEL
  os.environ['NET_MODEL'] = "160_net_G_A.pth"
  # ALIAS_MODEL
  os.environ['ALIAS_MODEL'] = "alias_net.pth"


  use_cpu = True
  m = Model(device = "cpu" if use_cpu else "cuda")
  m.load()

  # To use GPU: Change use_cpu to false, and checkout my comment on networks.py at line 107 & 108
  # + Use torch with cuda support (Change in requirements.txt)

  gr.Interface(m.pixelize_modified,
             [
              gr.components.Image(type='pil', label='Input'),
              gr.components.Slider(minimum=4, maximum=32, value=4, step=1, label='Pixel Size'),
              gr.components.Checkbox(True, label="Upscale after")
             ],
              gr.components.Image(type='pil', label='Output'),
              title="Pixelization",
              description='''
Demo for [WuZongWei6/Pixelization](https://github.com/WuZongWei6/Pixelization)

Models that are used is private to comply with License.

Code forked from [arenatemp/pixelization_inference](https://github.com/arenatemp/pixelization_inference) and [AUTOMATIC1111/stable-diffusion-webui-pixelization](https://github.com/AUTOMATIC1111/stable-diffusion-webui-pixelization), modified to work with spaces.

              ''',
              theme=args.theme,
              allow_flagging=args.allow_flagging,
              live=args.live, 
              ).launch(
                enable_queue=args.enable_queue,
                server_port=args.port,
                share=args.share,
              )

if __name__ == '__main__':
    main()