File size: 9,546 Bytes
a743eab
8593387
7166f82
de062b2
f1f0624
072be46
2d616b6
eeabe0b
ef60d1f
106e94e
 
f1f0624
f2474c0
f1f0624
7166f82
5cd099c
7166f82
 
 
2f83d91
7166f82
eeabe0b
0b85370
 
582cdaa
7166f82
 
b6b8268
7166f82
d0a33ce
226cf48
d0a33ce
7166f82
 
 
 
51946fc
582cdaa
7166f82
51b3fe0
fcc60cf
51b3fe0
7166f82
8920538
ef60d1f
eeabe0b
7166f82
 
 
ef60d1f
eeabe0b
37fb05d
 
 
 
 
 
 
 
4e4575b
 
 
 
 
 
 
 
 
 
7166f82
 
 
8593387
4e4575b
 
 
8593387
8822d53
58af7df
8822d53
7166f82
 
8822d53
b6b8268
58af7df
 
d0a33ce
 
 
 
 
 
58af7df
 
 
 
7166f82
f1f0624
 
 
58af7df
37fb05d
ef60d1f
66dc7aa
d0a33ce
ef60d1f
8822d53
7f62ffc
d0a33ce
 
2169527
7f62ffc
072be46
57f1a14
d0a33ce
57f1a14
d0a33ce
57f1a14
 
 
 
 
 
 
 
7f62ffc
51b3fe0
57f1a14
 
8822d53
f1f0624
 
 
 
 
 
 
 
0d9be8f
eeabe0b
22bb342
2d616b6
 
 
cc7d78f
 
2d616b6
 
 
 
66dc7aa
2d616b6
 
66dc7aa
2d616b6
cc7d78f
 
2d616b6
 
 
862e936
cc7d78f
 
eeabe0b
cc7d78f
 
 
 
8920538
37fb05d
 
85f4493
c880135
09c32d0
 
9de422b
 
09c32d0
 
 
fe72ac7
 
 
 
0161e86
09c32d0
 
518953a
09c32d0
f736e15
 
 
 
 
 
 
09c32d0
 
d0a33ce
fe72ac7
d0a33ce
 
09c32d0
d0a33ce
8a150e9
d0a33ce
8a150e9
d0a33ce
8a150e9
399f4f3
4222cb7
 
399f4f3
58af7df
 
 
 
d0a33ce
58af7df
 
 
 
 
d0a33ce
58af7df
 
4222cb7
 
fd256c4
58af7df
 
 
3d5e124
58af7df
d0a33ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
import assemblyai as aai
from transformers import pipeline
import os
from supabase import create_client, Client
from datetime import datetime
import csv
from typing import Optional

# Add your AssemblyAI API key as Environment Variable
aai.settings.api_key = os.environ['Assembly']
url: str = os.environ['DBUrl']
key: str = os.environ['DBKey']

# Initialize question answering pipeline
question_answerer = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')

# List of questions
questions = [
    "How old is the patient?",
    "What is the gender?",
    "What is the chief complaint regarding the patient's oral health?",
    "List the Medical history mentioned",
    "Give the Dental history in detail",
    "Please give all the clinical findings which were listed"
]

# Oral Health Assessment Form
oral_health_assessment_form = [
    "Doctor's Name",
    "Location",
    "Patient's Name",
    "Age",
    "Gender",
    "Chief complaint",
    "Medical history",
    "Dental history",
    "Clinical Findings",
    "Treatment plan",
    "Referred to",
    "Calculus",
    "Stains"
]

# Function to generate answers for the questions
def generate_answer(question: str, context: str) -> str:
    result = question_answerer(question=question, context=context)
    return result['answer']

# Function to handle audio recording and transcription
def transcribe_audio(audio_path: str) -> str:
    print(f"Received audio file at: {audio_path}")
    
    if not os.path.exists(audio_path):
        return "Error: Audio file does not exist."
    
    if os.path.getsize(audio_path) == 0:
        return "Error: Audio file is empty."
    
    try:
        transcriber = aai.Transcriber()
        print("Starting transcription...")
        transcript = transcriber.transcribe(audio_path)
        print("Transcription process completed.")
        
        if transcript.status == aai.TranscriptStatus.error:
            print(f"Error during transcription: {transcript.error}")
            return transcript.error
        else:
            context = transcript.text
            print(f"Transcription text: {context}")
            return context
    
    except Exception as e:
        print(f"Exception occurred: {e}")
        return str(e)

# Function to fill in the answers for the text boxes
def fill_textboxes(context: str) -> list:
    answers = []
    for question in questions:
        answer = generate_answer(question, context)
        answers.append(answer)
    
    # Map answers to form fields in the correct order and return as a list
    return [
        answers[0] if len(answers) > 0 else "",  # Age
        answers[1] if len(answers) > 1 else "",  # Gender
        answers[2] if len(answers) > 2 else "",  # Chief complaint
        answers[3] if len(answers) > 3 else "",  # Medical history
        answers[4] if len(answers) > 4 else "",  # Dental history
        answers[5] if len(answers) > 5 else "",  # Clinical Findings
        "",  # Referred to
        "",  # Calculus
        "",  # Stains
    ]

# Supabase configuration
supabase: Client = create_client(url, key)

def handle_transcription(audio: str, doctor_name: str, location: str) -> list:
    context = transcribe_audio(audio)
    if "Error" in context:
        # Fill all fields with the error message
        return [context] * (len(textboxes_left) + len(textboxes_right) + 3)  # +3 for doctor_name, location, and treatment_plan
    
    answers = fill_textboxes(context)
    
    # Insert Doctor's Name and Location in the appropriate fields
    return [doctor_name, location] + answers + [""]  # Empty string for treatment_plan dropdown

def save_answers(doctor_name: str, location: str, patient_name: str, age: str, gender: str, chief_complaint: str, medical_history: str, dental_history: str, clinical_findings: str, treatment_plan: str, referred_to: str, calculus: str, stains: str) -> str:
    current_datetime = datetime.now().isoformat()
    answers_dict = {
        "Doctor's Name": doctor_name,
        "Location": location,
        "Patient's Name": patient_name,
        "Age": age,
        "Gender": gender,
        "Chief complaint": chief_complaint,
        "Medical history": medical_history,
        "Dental history": dental_history,
        "Clinical Findings": clinical_findings,
        "Treatment plan": treatment_plan,
        "Referred to": referred_to,
        "Calculus": calculus,
        "Stains": stains,
        "Submission Date and Time": current_datetime
    }
    print("Saved answers:", answers_dict)
    
    try:
        response = supabase.table('oral_health_assessments').insert(answers_dict).execute()
        print("Data inserted into Supabase:", response.data)
        return f"Saved answers: {answers_dict}"
    except Exception as e:
        print(f"Error inserting data into Supabase: {e}")
        return f"Error saving answers: {e}"

def download_table_to_csv() -> Optional[str]:
    response = supabase.table("oral_health_assessments").select("*").execute()
    
    if not response.data:
        print("No data found in the table.")
        return None

    data = response.data
    csv_data = []

    if len(data) > 0:
        csv_data.append(data[0].keys())  # Write header

    for row in data:
        csv_data.append(row.values())  # Write row values

    csv_file = "your_table.csv"
    with open(csv_file, "w", newline='') as f:
        writer = csv.writer(f)
        writer.writerows(csv_data)

    print("Downloaded table oral_health_assessments")
    return csv_file

def gradio_download() -> Optional[str]:
    file_path = download_table_to_csv()
    if file_path:
        return file_path
    return None

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# OHA Form Filler App")
    
    with gr.Tabs() as tabs:
        with gr.Tab("Doctor Info"):
            doctor_name_input = gr.Textbox(label="Doctor's Name", interactive=True)
            location_input = gr.Textbox(label="Location", interactive=True)
            submit_button = gr.Button("Submit")
            info_output = gr.HTML(label="Submitted Info")
            
            def submit_info(name, loc):
                return f"Doctor's Name: {name}<br>Location: {loc}"
            
            submit_button.click(fn=submit_info, inputs=[doctor_name_input, location_input], outputs=info_output)
        
        with gr.Tab("OHA Form"):
            audio_input = gr.Audio(type="filepath", label="Record your audio", elem_id="audio_input")
            transcribe_button = gr.Button("Transcribe and Generate Form", elem_id="transcribe_button", interactive=False)
            
            def enable_transcribe_button(audio):
                if audio:
                    return gr.update(interactive=True)
                return gr.update(interactive=False)
            
            audio_input.change(fn=enable_transcribe_button, inputs=audio_input, outputs=transcribe_button)

            with gr.Row(elem_id="textboxes_row"):
                with gr.Column():
                    doctor_name_display = gr.Textbox(label="Doctor's Name", value="", interactive=False)
                    location_display = gr.Textbox(label="Location", value="", interactive=False)
                    patient_name_input = gr.Textbox(label="Patient's Name", value="", interactive=True)
                    textboxes_left = [gr.Textbox(label=oral_health_assessment_form[i], value="", interactive=True) for i in range(3, 9)]  # Age, Gender, Chief complaint, Medical history, Dental history, Clinical Findings
                with gr.Column():
                    textboxes_right = [
                        gr.Dropdown(choices=["None", "Oral Medicine and Radiology", "Periodontics", "Oral Surgery", "Conservative and Endodontics", "Prosthodontics", "Pedodontics", "Orthodontics"], label="Referred to", interactive=True),
                        gr.Dropdown(choices=["+", "++", "+++"], label="Calculus", interactive=True),
                        gr.Dropdown(choices=[ "+", "++", "+++"], label="Stains", interactive=True),
                    ]
                    treatment_plan_dropdown = gr.Dropdown(choices=["Scaling", "Filling", "Pulp therapy/RCT", "Extraction", "Medication"], label="Treatment plan", interactive=True)

            oha_output = gr.Textbox(label="OHA Output", value="", interactive=False)
            save_button = gr.Button("Save to Supabase", elem_id="save_button", interactive=True)
            
            # Update the transcription and form fields when the transcribe button is clicked
            transcribe_button.click(
                fn=handle_transcription, 
                inputs=[audio_input, doctor_name_input, location_input], 
                outputs=[doctor_name_display, location_display] + textboxes_left + textboxes_right + [treatment_plan_dropdown]
            )
            
            # Save the form data to Supabase when the save button is clicked
            save_button.click(
                fn=save_answers, 
                inputs=[doctor_name_display, location_display, patient_name_input] + textboxes_left + [treatment_plan_dropdown] + textboxes_right, 
                outputs=[oha_output]
            )
        
        with gr.Tab("Download Data"):
            download_button = gr.Button("Download CSV")
            download_output = gr.File(label="Download the CSV File", interactive=False)
            
            download_button.click(fn=gradio_download, inputs=[], outputs=download_output)

# Launch the Gradio app
demo.launch(share=True)