Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import os | |
from threading import Thread | |
MODEL_ID = "THUDM/glm-4v-9b" | |
TITLE = f'<br><center>🚀 Coin Generative Recognition</a></center>' | |
DESCRIPTION = f""" | |
<center> | |
<p> | |
A Space for Vision/Multimodal | |
<br> | |
<br> | |
✨ Tips: Send messages or upload multiple IMAGES at a time. | |
<br> | |
✨ Tips: Please increase MAX LENGTH when dealing with files. | |
<br> | |
🤙 Supported Format: png, jpg, webp | |
<br> | |
🙇♂️ May be rebuilding from time to time. | |
</p> | |
</center>""" | |
CSS = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
img { | |
max-width: 100%; /* Make sure images are not wider than their container */ | |
height: auto; /* Maintain aspect ratio */ | |
max-height: 300px; /* Limit the height of images */ | |
} | |
""" | |
# Load model directly | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
).to(0) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model.eval() | |
def merge_images(paths): | |
images = [Image.open(path).convert('RGB') for path in paths] | |
widths, heights = zip(*(i.size for i in images)) | |
total_width = sum(widths) | |
max_height = max(heights) | |
new_im = Image.new('RGB', (total_width, max_height)) | |
x_offset = 0 | |
for im in images: | |
new_im.paste(im, (x_offset,0)) | |
x_offset += im.width | |
return new_im | |
def mode_load(paths): | |
if all(path.lower().endswith(('png', 'jpg', 'jpeg', 'webp')) for path in paths): | |
content = merge_images(paths) | |
choice = "image" | |
return choice, content | |
else: | |
raise gr.Error("Unsupported file types. Please upload only images.") | |
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float): | |
conversation = [] | |
if message["files"]: | |
choice, contents = mode_load(message["files"]) | |
conversation.append({"role": "user", "image": contents, "content": message['text']}) | |
elif message["files"] and len(message["files"]) == 1: | |
content = Image.open( message["files"][-1]).convert('RGB') | |
choice = "image" | |
conversation.append({"role": "user", "image": content, "content": message['text']}) | |
else: | |
raise gr.Error("Please upload one or more images.") | |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
max_length=max_length, | |
streamer=streamer, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=penalty, | |
eos_token_id=[151329, 151336, 151338], | |
) | |
gen_kwargs = {**input_ids, **generate_kwargs} | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
chatbot = gr.Chatbot(label="Chatbox", height=600, placeholder=DESCRIPTION) | |
chat_input = gr.MultimodalTextbox( | |
interactive=True, | |
placeholder="Enter message or upload images...", | |
show_label=False, | |
file_count="multiple", | |
) | |
EXAMPLES = [ | |
[{"text": "Give me Country,Denomination and year as json format.", "files": ["./135_back.jpg", "./135_front.jpg"]}], | |
[{"text": "Give me Country,Denomination and year as json format.", "files": ["./141_back.jpg","./141_front.jpg"]}] | |
] | |
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo: | |
gr.HTML(TITLE) | |
gr.ChatInterface( | |
fn=stream_chat, | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1024, | |
maximum=8192, | |
step=1, | |
value=4096, | |
label="Max Length", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="top_p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=10, | |
label="top_k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
label="Repetition penalty", | |
render=False, | |
), | |
], | |
), | |
gr.Examples(EXAMPLES, [chat_input]) | |
if __name__ == "__main__": | |
demo.queue(api_open=False).launch(show_api=False, share=False) | |