Nechba's picture
Update app.py
67eb48f verified
raw
history blame
5.62 kB
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "Nechba/Coin-Generative-Recognition"
TITLE = f'<br><center>🚀 Coin Generative Recognition</a></center>'
DESCRIPTION = f"""
<center>
<p>
A Space for Vision/Multimodal
<br>
<br>
✨ Tips: Send messages or upload multiple IMAGES at a time.
<br>
✨ Tips: Please increase MAX LENGTH when dealing with files.
<br>
🤙 Supported Format: png, jpg, webp
<br>
🙇‍♂️ May be rebuilding from time to time.
</p>
</center>"""
CSS = """
h1 {
text-align: center;
display: block;
}
img {
max-width: 100%; /* Make sure images are not wider than their container */
height: auto; /* Maintain aspect ratio */
max-height: 300px; /* Limit the height of images */
}
"""
import os
# Directory where the model and tokenizer will be saved
# Load model directly
from transformers import AutoModel
model = AutoModel.from_pretrained("Nechba/Coin-Generative-Recognition", trust_remote_code=True).to(0)
# model = AutoModelForCausalLM.from_pretrained(
# MODEL_ID,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# trust_remote_code=True
# ).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()
def merge_images(paths):
images = [Image.open(path).convert('RGB') for path in paths]
widths, heights = zip(*(i.size for i in images))
total_width = sum(widths)
max_height = max(heights)
new_im = Image.new('RGB', (total_width, max_height))
x_offset = 0
for im in images:
new_im.paste(im, (x_offset,0))
x_offset += im.width
return new_im
def mode_load(paths):
if all(path.lower().endswith(('png', 'jpg', 'jpeg', 'webp')) for path in paths):
content = merge_images(paths)
choice = "image"
return choice, content
else:
raise gr.Error("Unsupported file types. Please upload only images.")
@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
conversation = []
if message["files"]:
choice, contents = mode_load(message["files"])
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif message["files"] and len(message["files"]) == 1:
content = Image.open( message["files"][-1]).convert('RGB')
choice = "image"
conversation.append({"role": "user", "image": content, "content": message['text']})
else:
raise gr.Error("Please upload one or more images.")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[151329, 151336, 151338],
)
gen_kwargs = {**input_ids, **generate_kwargs}
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(label="Chatbox", height=600, placeholder=DESCRIPTION)
chat_input = gr.MultimodalTextbox(
interactive=True,
placeholder="Enter message or upload images...",
show_label=False,
file_count="multiple",
)
EXAMPLES = [
[{"text": "Give me Country,Denomination and year as json format.", "files": ["./135_back.jpg", "./135_front.jpg"]}],
[{"text": "Give me Country,Denomination and year as json format.", "files": ["./141_back.jpg","./141_front.jpg"]}]
]
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
gr.HTML(TITLE)
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=8192,
step=1,
value=4096,
label="Max Length",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=10,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
),
gr.Examples(EXAMPLES, [chat_input])
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False)