[email protected] commited on
Commit
47a68c5
1 Parent(s): 47f3322

why's this taking so long

Browse files
README.md CHANGED
@@ -13,24 +13,4 @@ pinned: false
13
  # image2textapp
14
  demo of 🤗 spaces deployment of a streamlit python app
15
 
16
-
17
- Installation instructions
18
-
19
- ```docker compose run dev-environment```
20
-
21
- Procedure used:
22
-
23
- Reasoned that it would make the most amount of sense to be able to modify the
24
- source code while the container is still running to allow for iterative
25
- debugging in the environment in which it is being deployed. To avoid writing
26
- back to the system, a readonly option was provided to the filesystem.
27
-
28
- Docker compose was used to provide a separation of concerns, and to move testing
29
- logic outside of the container that is to be deployed. This decouples the logic
30
- of the tests from the application logic. I have familiarity with docker compose
31
- and am happy to work with it again.
32
-
33
- A bare-metal python Dockerfile base image was used to provide a stable python
34
- deployment version. This version will be targeted in the poetry files, and
35
- packages necessary will be installed into the system python with the appropriate
36
- poetry arguments.
 
13
  # image2textapp
14
  demo of 🤗 spaces deployment of a streamlit python app
15
 
16
+ deployed at https://huggingface.co/spaces/NativeVex/large-language-models
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
language_models_project/app.py CHANGED
@@ -10,16 +10,26 @@ st.title("Easy OCR - Extract Text from Images")
10
  #subtitle
11
  st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces")
12
 
 
 
 
 
 
 
 
 
 
13
  input_sentences = st.text_area("Sentences", value="", height=200)
14
 
15
  data = input_sentences.split('\n')
16
 
17
  #if st.button("Classify"):
18
  for i in data:
19
- j = classify(i)[0]
20
- sentiment = j['label'] == 'POS'
 
21
  confidence = j['score']
22
- st.write(f"{i} :: Classification - {'positive' if sentiment else 'negative'} with confidence {confidence}")
23
 
24
 
25
  st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")
 
10
  #subtitle
11
  st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces")
12
 
13
+ model_name = st.selectbox(
14
+ 'Select a pre-trained model',
15
+ [
16
+ 'finiteautomata/bertweet-base-sentiment-analysis',
17
+ 'ahmedrachid/FinancialBERT-Sentiment-Analysis',
18
+ 'finiteautomata/beto-sentiment-analysis'
19
+ ],
20
+ )
21
+
22
  input_sentences = st.text_area("Sentences", value="", height=200)
23
 
24
  data = input_sentences.split('\n')
25
 
26
  #if st.button("Classify"):
27
  for i in data:
28
+ st.write(i)
29
+ j = classify(model_name.strip(), i)[0]
30
+ sentiment = j['label']
31
  confidence = j['score']
32
+ st.write(f"{i} :: Classification - {sentiment} with confidence {confidence}")
33
 
34
 
35
  st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")
language_models_project/main.py CHANGED
@@ -1,8 +1,12 @@
1
  from transformers import pipeline
2
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
 
4
- def classify(*args, **kwargs):
5
- tokenizer = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis")
6
- model = AutoModelForSequenceClassification.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis")
7
- sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
 
 
 
 
8
  return sentiment_pipeline(*args, **kwargs)
 
1
  from transformers import pipeline
2
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
 
4
+ def classify(model_string: str, *args, **kwargs):
5
+ tokenizer = AutoTokenizer.from_pretrained(model_string)
6
+ model = AutoModelForSequenceClassification.from_pretrained(model_string)
7
+ sentiment_pipeline = pipeline(
8
+ "sentiment-analysis",
9
+ model=model,
10
+ tokenizer=tokenizer
11
+ )
12
  return sentiment_pipeline(*args, **kwargs)