Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import numpy as np | |
import time | |
import os | |
from collections import defaultdict | |
import captioning.utils.opts as opts | |
import captioning.models as models | |
from captioning.data.pth_loader import CaptionDataset | |
import captioning.utils.eval_utils as eval_utils | |
import captioning.utils.misc as utils | |
from captioning.utils.rewards import init_scorer, get_self_critical_reward | |
from captioning.modules.loss_wrapper import LossWrapper | |
import pytorch_lightning as pl | |
import detectron2.utils.comm as d2comm | |
from detectron2.utils.env import seed_all_rng | |
seed_all_rng(1234) | |
class LitModel(pl.LightningModule): | |
def __init__(self, opt): | |
super().__init__() | |
self.opt = opt | |
# Intilaize dataset | |
self.dataset = CaptionDataset(opt) | |
opt.vocab_size = self.dataset.vocab_size | |
opt.seq_length = self.dataset.seq_length | |
self.batch_size = opt.batch_size | |
# Build model | |
opt.vocab = self.dataset.get_vocab() | |
model = models.setup(opt) | |
# print(model) | |
del opt.vocab | |
# wrapper with loss in it. | |
lw_model = LossWrapper(model, opt) | |
self.model = model | |
self.lw_model = lw_model | |
self.struc_flag = None | |
self.sc_flag = None | |
# if self.opt.use_clipscore: | |
# if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1': | |
# if CLIP-S+Grammar is used in reward -> Launch another CLIP-S where parameter is unchanged | |
if getattr(self.opt, 'use_grammar', False): | |
from captioning.utils.clipscore import CLIPScore | |
self.val_clipscore_model = CLIPScore( | |
mode=opt.clipscore_mode, use_grammar=False) | |
for p in self.val_clipscore_model.parameters(): | |
p.requires_grad = False | |
else: | |
if self.lw_model.clipscore_model is not None: | |
self.val_clipscore_model = self.lw_model.clipscore_model | |
else: | |
from captioning.utils.clipscore import CLIPScore | |
self.val_clipscore_model = CLIPScore( | |
mode=opt.clipscore_mode, use_grammar=False) | |
for p in self.val_clipscore_model.parameters(): | |
p.requires_grad = False | |
self.val_clipscore_model.eval() | |
# BERTSCORE | |
from bert_score import BERTScorer | |
self.bert_scorer = BERTScorer( | |
lang="en", | |
# rescale_with_baseline=True, | |
rescale_with_baseline=False, | |
device='cpu' | |
) | |
def forward(self, *args, **kwargs): | |
""" | |
I hate this design. Never pretend it as a nn.Module | |
""" | |
raise NotImplementedError | |
def train_dataloader(self): | |
train_dataset = torch.utils.data.Subset( | |
self.dataset, | |
self.dataset.split_ix['train'] | |
) | |
train_loader = torch.utils.data.DataLoader( | |
dataset=train_dataset, | |
batch_size=self.batch_size, | |
shuffle=True, | |
num_workers=4, | |
collate_fn=self.dataset.collate_func | |
) | |
return train_loader | |
def val_dataloader(self, split='val'): | |
val_dataset = torch.utils.data.Subset( | |
self.dataset, | |
self.dataset.split_ix[split] | |
) | |
val_loader = torch.utils.data.DataLoader( | |
val_dataset, | |
batch_size=self.batch_size, | |
shuffle=False, | |
num_workers=4, | |
drop_last=False, | |
collate_fn=self.dataset.collate_func | |
) | |
return val_loader | |
def test_dataloader(self): | |
return self.val_dataloader('test') | |
def training_step(self, data, batch_idx): | |
sc_flag, struc_flag = self.sc_flag, self.struc_flag | |
tmp = [data['fc_feats'], data['att_feats'], | |
data['labels'], data['masks'], data['att_masks']] | |
fc_feats, att_feats, labels, masks, att_masks = tmp | |
if int(os.getenv('M2_cider', '0')) != 0: | |
data['gts'] = data['rawgts'] | |
if self.opt.use_clipscore: | |
clip_vis_feats = data['clip_vis_feats'] | |
model_out = self.lw_model(fc_feats, att_feats, labels, masks, att_masks, | |
data['gts'], torch.arange(0, len(data['gts'])), sc_flag, struc_flag, | |
clip_vis_feats=clip_vis_feats) | |
else: | |
model_out = self.lw_model(fc_feats, att_feats, labels, masks, att_masks, | |
data['gts'], torch.arange(0, len(data['gts'])), sc_flag, struc_flag) | |
loss = model_out['loss'] | |
data_time = self.trainer.profiler.recorded_durations["get_train_batch"][-1] | |
data_time = torch.tensor(data_time) | |
logger_logs = model_out.copy() | |
# if struc_flag or sc_flag: | |
# logger_logs['reward'] = model_out['reward'].mean() | |
# logger_logs['reward_var'] = model_out['reward'].var(1).mean() | |
if struc_flag or sc_flag: | |
logger_logs['reward'] = model_out['reward'].mean() | |
for k in ['CLIP-S', 'RefCLIP-S', 'CIDEr', 'grammar_reward']: | |
if k in model_out: | |
logger_logs[k] = model_out[k] | |
if struc_flag: | |
logger_logs['reward_var'] = model_out['reward'].var(1).mean() | |
logger_logs['scheduled_sampling_prob'] = torch.tensor( | |
self.model.ss_prob) | |
# logger_logs['training_loss'] = loss | |
logger_logs['loss'] = loss | |
logger_logs['data_time'] = data_time | |
# UserWarning: The {progress_bar:dict keyword} was deprecated in 0.9.1 and will be removed in 1.0.0 | |
# Please use self.log(...) inside the lightningModule instead. | |
# # log on a step or aggregate epoch metric to the logger and/or progress bar | |
# # (inside LightningModule) | |
# self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True) | |
# warnings.warn(*args, **kwargs) | |
# UserWarning: The {log:dict keyword} was deprecated in 0.9.1 and will be removed in 1.0.0 | |
# Please use self.log(...) inside the lightningModule instead. | |
# output = { | |
# 'loss': loss, | |
# 'log': logger_logs, | |
# 'progress_bar': {'data_time': data_time} | |
# } | |
for k, v in logger_logs.items(): | |
if k in ['reward', 'reward_var', 'data_time', 'CLIP-S', 'RefCLIP-S', 'CIDEr', 'grammar_reward']: | |
self.log('train/'+k, v, prog_bar=True) | |
else: | |
self.log('train/'+k, v) | |
return loss | |
def validation_step(self, data, batch_idx): | |
model = self.model | |
crit = self.lw_model.crit | |
opt = self.opt | |
eval_kwargs = {'dataset': opt.input_json} | |
eval_kwargs.update(vars(opt)) | |
# CLIPScore | |
use_grammar = getattr(self.opt, 'use_grammar', False) | |
joint_out = getattr(self.opt, 'joint_out', False) | |
verbose = eval_kwargs.get('verbose', True) | |
verbose_beam = eval_kwargs.get('verbose_beam', 0) | |
verbose_loss = eval_kwargs.get('verbose_loss', 1) | |
# num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1)) | |
# lang_eval = eval_kwargs.get('language_eval', 0) | |
dataset = eval_kwargs.get('dataset', 'coco') | |
beam_size = eval_kwargs.get('beam_size', 1) | |
sample_n = eval_kwargs.get('sample_n', 1) | |
remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0) | |
# Use this nasty way to make other code clean since it's a global configuration | |
os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) | |
predictions = [] | |
n_predictions = [] | |
loss = torch.tensor(0) | |
if data.get('labels', None) is not None and verbose_loss: | |
# forward the model to get loss | |
tmp = [data['fc_feats'], data['att_feats'], | |
data['labels'], data['masks'], data['att_masks']] | |
fc_feats, att_feats, labels, masks, att_masks = tmp | |
loss = crit(model(fc_feats, att_feats, | |
labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) | |
# forward the model to also get generated samples for each image | |
# Only leave one feature for each image, in case duplicate sample | |
tmp_eval_kwargs = eval_kwargs.copy() | |
tmp_eval_kwargs.update({'sample_n': 1}) | |
seq, seq_logprobs = model( | |
fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample') | |
seq = seq.data | |
entropy = - (F.softmax(seq_logprobs, dim=2) * | |
seq_logprobs).sum(2).sum(1) / ((seq > 0).to(seq_logprobs).sum(1)+1) | |
perplexity = - \ | |
seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze( | |
2).sum(1) / ((seq > 0).to(seq_logprobs).sum(1)+1) | |
# Print beam search | |
if beam_size > 1 and verbose_beam: | |
for i in range(fc_feats.shape[0]): | |
print('\n'.join([utils.decode_sequence(model.vocab, _[ | |
'seq'].unsqueeze(0))[0] for _ in model.done_beams[i]])) | |
print('--' * 10) | |
sents = utils.decode_sequence(model.vocab, seq) | |
# if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1': | |
# text_feat = self.lw_model.clipscore_model.text_extract(sents) | |
text_feat = self.val_clipscore_model.text_extract(sents, proj_norm=False) | |
text_cont_feat = self.val_clipscore_model.clip_model.text_projection(text_feat) | |
text_cont_feat = text_cont_feat / text_cont_feat.norm(dim=-1, keepdim=True) | |
vis_feat = data['clip_vis_feats'] | |
# if self.opt.clipscore_mode == 'clip_s': | |
# clip_s = self.val_clipscore_model(text_feat=text_cont_feat, img_feat=vis_feat, mode='clip_s') | |
# elif self.opt.clipscore_mode == 'refclip_s': | |
clip_s = self.val_clipscore_model(text_feat=text_cont_feat, img_feat=vis_feat, mode='clip_s') | |
# ref_text = utils.decode_sequence(model.vocab, data['gts']) | |
gt_indices = torch.arange(0, len(data['gts'])) | |
data_gts = [data['gts'][_] for _ in gt_indices.tolist()] | |
B = len(data_gts) | |
gts = [] | |
gts_valid_mask = [] | |
max_n_refs = max([len(_gts) for _gts in data_gts]) | |
for i in range(len(data_gts)): | |
_gts = utils.decode_sequence(model.vocab, data_gts[i]) | |
# pad references | |
n_ref = len(_gts) | |
_gts.extend([''] * (max_n_refs - n_ref)) | |
gts.extend(_gts) | |
gts_valid_mask.extend([1] * n_ref + [0] * (max_n_refs - n_ref)) | |
assert len(gts) == B * max_n_refs | |
assert len(gts_valid_mask) == B * max_n_refs | |
ref_text = gts | |
ref_text_mask = gts_valid_mask | |
refclip_s = self.val_clipscore_model( | |
text_feat=text_cont_feat, img_feat=vis_feat, | |
ref_text=ref_text, ref_text_mask=ref_text_mask, mode='refclip_s') | |
# use_grammar = getattr(self.opt, 'use_grammar', False) | |
# joint_out = getattr(self.opt, 'joint_out', False) | |
if use_grammar and not joint_out: | |
with torch.no_grad(): | |
# grammar_logit = self.val_clipscore_model.grammar_score_head(text_feat.view(-1, 512)) | |
grammar_logit = self.lw_model.clipscore_model.grammar_score_head(text_feat.view(-1, 512)) | |
grammar_prob = torch.softmax(grammar_logit, dim=-1)[:, 1] | |
# BERTScore | |
if next(self.bert_scorer._model.parameters()).device != self.device: | |
self.bert_scorer._model.to(self.device) | |
self.bert_scorer.device = self.device | |
# [B*K] -> [B, K] | |
ref_text_per_example = [] | |
for i in range(B): | |
ref_text_list_example = [] | |
for k in range(max_n_refs): | |
ref = ref_text[i * max_n_refs + k] | |
if len(ref) > 0: | |
ref_text_list_example.append(ref) | |
# assert len(ref_text_list_example) == max_n_refs | |
ref_text_per_example.append(ref_text_list_example) | |
assert len(ref_text_per_example) == B | |
P, R, F1 = self.bert_scorer.score( | |
sents, | |
ref_text_per_example, | |
) | |
bertscore_f1 = F1 | |
# print('Example 5:') | |
# for i in range(5): | |
# print('Generated:', sents[i]) | |
# print('ref_text:', ref_text_per_example[i]) | |
# print('BERT-Score:', F1[i].item()) | |
for k, sent in enumerate(sents): | |
entry = {'image_id': data['infos'][k]['id'], 'caption': sent, | |
'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()} | |
if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1': | |
# if self.opt.clipscore_mode == 'clip_s': | |
# entry['clipscore'] = clipscore[k].item() | |
# entry['CLIP-S'] = clip_s[k].item() | |
# elif self.opt.clipscore_mode == 'refclip_s': | |
entry['CLIP-S'] = clip_s[k].item() | |
entry['RefCLIP-S'] = refclip_s[k].item() | |
if use_grammar and not joint_out: | |
entry['grammar_prob'] = grammar_prob[k].item() | |
# BERT-S | |
entry['BERT-S'] = bertscore_f1[k].item() | |
if eval_kwargs.get('dump_path', 0) == 1: | |
entry['file_name'] = data['infos'][k]['file_path'] | |
predictions.append(entry) | |
if eval_kwargs.get('dump_images', 0) == 1: | |
# dump the raw image to vis/ folder | |
cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + \ | |
'" vis/imgs/img' + \ | |
str(len(predictions)) + '.jpg' # bit gross | |
print(cmd) | |
os.system(cmd) | |
if verbose: | |
print('image %s: %s' % | |
(entry['image_id'], entry['caption'])) | |
if sample_n > 1: | |
eval_utils.eval_split_n(model, n_predictions, [ | |
fc_feats, att_feats, att_masks, data], eval_kwargs) | |
output = { | |
# 'val_loss': loss, | |
'loss': loss, | |
'predictions': predictions, | |
'n_predictions': n_predictions, | |
} | |
return output | |
def test_step(self, *args, **kwargs): | |
return self.validation_step(*args, **kwargs) | |
def validation_epoch_end(self, outputs, split='val'): | |
outputs = d2comm.gather(outputs) | |
# master node | |
if d2comm.is_main_process(): | |
assert self.trainer.node_rank == 0 and self.trainer.local_rank == 0 | |
outputs = sum(outputs, []) | |
opt = self.opt | |
# val_loss_mean = sum([_['val_loss'] | |
# val_loss_mean = sum([_['val_loss'].cpu() | |
val_loss_mean = sum([_['loss'].cpu() | |
for _ in outputs]) / len(outputs) | |
predictions = sum([_['predictions'] for _ in outputs], []) | |
if len(outputs[0]['n_predictions']) != 0: | |
n_predictions = sum([_['n_predictions'] for _ in outputs], []) | |
else: | |
n_predictions = [] | |
lang_stats = None | |
if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]: | |
n_predictions = sorted( | |
n_predictions, key=lambda x: x['perplexity']) | |
if not os.path.isdir('eval_results'): | |
os.mkdir('eval_results') | |
torch.save((predictions, n_predictions), os.path.join( | |
'eval_results/', '.saved_pred_' + opt.id + '_' + split + '.pth')) | |
if opt.language_eval: | |
lang_stats = eval_utils.language_eval( | |
opt.input_json, predictions, n_predictions, vars(opt), split) | |
if opt.reduce_on_plateau: | |
optimizer = self.trainer.optimizers[0] | |
if 'CIDEr' in lang_stats: | |
optimizer.scheduler_step(-lang_stats['CIDEr']) | |
else: | |
optimizer.scheduler_step(val_loss_mean) | |
# out = { | |
# 'val_loss': val_loss_mean | |
# } | |
out = { | |
'loss': val_loss_mean | |
} | |
out.update(lang_stats) | |
# out['to_monitor'] = lang_stats['CIDEr'] if lang_stats is not None else -val_loss_mean | |
if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1': | |
# if self.opt.clipscore_mode == 'clip_s': | |
# out['clipscore'] = sum([p['clipscore'] for p in predictions]) / len(predictions) | |
# print('CLIPScore', out['clipscore']) | |
# out['CLIP-S'] = sum([p['CLIP-S'] for p in predictions]) / len(predictions) | |
# print('CLIP-S', out['CLIP-S']) | |
# elif self.opt.clipscore_mode == 'refclip_s': | |
out['CLIP-S'] = sum([p['CLIP-S'] for p in predictions]) / len(predictions) | |
print('CLIP-S', out['CLIP-S']) | |
out['RefCLIP-S'] = sum([p['RefCLIP-S'] for p in predictions]) / len(predictions) | |
print('RefCLIP-S', out['RefCLIP-S']) | |
if getattr(self.opt, 'use_grammar', False) and not getattr(self.opt, 'joint_out', False): | |
out['grammar_prob'] = sum([p['grammar_prob'] for p in predictions]) / len(predictions) | |
print('grammar_prob', out['grammar_prob']) | |
out['BERT-S'] = sum([p['BERT-S'] for p in predictions]) / len(predictions) | |
print('BERT-S', out['BERT-S']) | |
else: | |
out = {} | |
out = d2comm.all_gather(out)[0] # Only the one from master node | |
assert len(out) > 0 # make sure the head has index 0 | |
# must all be tensors | |
out = {k: torch.tensor(v) if not torch.is_tensor( | |
v) else v for k, v in out.items()} | |
# return { | |
# 'progress_bar': {'val_loss': out['val_loss']}, | |
# 'log': out, | |
# } | |
for k, v in out.items(): | |
# if k in ['loss', 'clipscore', 'RefCLIP-S', 'CIDEr']: | |
# if split != 'test': | |
# self.log(f'{split}/{k}', v, prog_bar=True) | |
# elif k == 'to_monitor': | |
# if split != 'test': | |
# self.log(f'{split}/{k}', v) | |
# else: | |
self.log(f'{split}/{k}', v) | |
def test_epoch_end(self, outputs): | |
# out = self.validation_epoch_end(outputs, 'test') | |
# out['progress_bar'] = { | |
# # 'test_loss': out['progress_bar']['val_loss'] | |
# 'test_loss': out['progress_bar']['loss'] | |
# } | |
# out['log']['test_loss'] = out['log']['val_loss'] | |
# del out['log']['val_loss'] | |
# del out['log']['to_monitor'] | |
# out['log'] = {'test_'+k if 'test' not in k else k:v \ | |
# for k,v in out['log'].items()} | |
# return out | |
self.validation_epoch_end(outputs, 'test') | |
def configure_optimizers(self): | |
opt = self.opt | |
model = self.model | |
parameters = [p for p in model.parameters() if p.requires_grad] | |
if opt.noamopt: | |
# assert opt.caption_model in ['transformer', 'bert', 'm2transformer'], 'noamopt can only work with transformer' | |
optimizer = utils.get_std_opt( | |
model, optim_func=opt.optim, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup) | |
elif opt.reduce_on_plateau: | |
# optimizer = utils.build_optimizer(model.parameters(), opt) | |
optimizer = utils.build_optimizer(parameters, opt) | |
optimizer = utils.ReduceLROnPlateau(optimizer, | |
factor=opt.reduce_on_plateau_factor, | |
patience=opt.reduce_on_plateau_patience) | |
else: | |
# optimizer = utils.build_optimizer(model.parameters(), opt) | |
optimizer = utils.build_optimizer(parameters, opt) | |
return [optimizer], [] | |
def optimizer_step(self, epoch, batch_idx, optimizer, | |
optimizer_idx, *args, **kwargs): | |
# warm up lr | |
opt = self.opt | |
iteration = self.trainer.global_step | |
if opt.use_warmup and (iteration < opt.noamopt_warmup): | |
opt.current_lr = opt.learning_rate * \ | |
(iteration+1) / opt.noamopt_warmup | |
utils.set_lr(optimizer, opt.current_lr) | |
super().optimizer_step(epoch, batch_idx, optimizer, | |
optimizer_idx, *args, **kwargs) | |
def state_dict(self): | |
""" | |
Save the model state dict as well as opt and vocab | |
""" | |
state_dict = self.model.state_dict() | |
device = next(iter(state_dict.values())).device | |
assert '_vocab' not in state_dict and '_opt' not in state_dict, 'Just in case' | |
state_dict.update({ | |
'_vocab': utils.serialize_to_tensor(self.model.vocab).to(device), | |
'_opt': utils.serialize_to_tensor(self.opt).to(device) | |
}) | |
return state_dict | |
def load_state_dict(self, state_dict=None, strict=True): | |
if '_vocab' in state_dict: | |
self.model.vocab = utils.deserialize(state_dict['_vocab']) | |
del state_dict['_vocab'] | |
# elif strict: | |
# raise KeyError | |
if '_opt' in state_dict: | |
saved_model_opt = utils.deserialize(state_dict['_opt']) | |
del state_dict['_opt'] | |
opt = self.opt | |
# Make sure the saved opt is compatible with the curren topt | |
need_be_same = ["caption_model", | |
"rnn_type", "rnn_size", "num_layers"] | |
for checkme in need_be_same: | |
if getattr(saved_model_opt, checkme) in ['updown', 'topdown'] and \ | |
getattr(opt, checkme) in ['updown', 'topdown']: | |
continue | |
assert getattr(saved_model_opt, checkme) == getattr( | |
opt, checkme), "Command line argument and saved model disagree on '%s' " % checkme | |
# elif strict: | |
# raise KeyError | |
self.model.load_state_dict(state_dict, strict) | |
class OnEpochStartCallback(pl.Callback): | |
def on_epoch_start(self, trainer, pl_module): | |
# Update lr/training stage/scheduled sampling prob etc. | |
opt = pl_module.opt | |
model = pl_module.model | |
epoch = trainer.current_epoch | |
optimizer = trainer.optimizers[0] | |
if not opt.noamopt and not opt.reduce_on_plateau: | |
# Assign the learning rate | |
if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0: | |
frac = ( | |
epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every | |
decay_factor = opt.learning_rate_decay_rate ** frac | |
opt.current_lr = opt.learning_rate * decay_factor | |
else: | |
opt.current_lr = opt.learning_rate | |
utils.set_lr(optimizer, opt.current_lr) # set the decayed rate | |
# Assign the scheduled sampling prob | |
if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0: | |
frac = ( | |
epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every | |
opt.ss_prob = min(opt.scheduled_sampling_increase_prob * | |
frac, opt.scheduled_sampling_max_prob) | |
model.ss_prob = opt.ss_prob | |
# If start self critical training | |
if opt.self_critical_after != -1 and epoch >= opt.self_critical_after: | |
sc_flag = True | |
init_scorer(opt.cached_tokens) | |
else: | |
sc_flag = False | |
# If start structure loss training | |
if opt.structure_after != -1 and epoch >= opt.structure_after: | |
struc_flag = True | |
init_scorer(opt.cached_tokens) | |
else: | |
struc_flag = False | |
pl_module.struc_flag = struc_flag | |
pl_module.sc_flag = sc_flag | |
class ModelCheckpoint(pl.callbacks.ModelCheckpoint): | |
def on_keyboard_interrupt(self, trainer, pl_module): | |
# Save model when keyboard interrupt | |
filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt') | |
self._save_model(filepath) | |
opt = opts.parse_opt() | |
checkpoint_callback = ModelCheckpoint( | |
filepath=opt.checkpoint_path, | |
# dirpath=opt.checkpoint_path, | |
save_last=True, | |
save_top_k=1, | |
verbose=True, | |
# monitor='to_monitor', | |
# monitor='val/to_monitor', | |
monitor='val/CIDEr', | |
mode='max', | |
# prefix=opt.id+'_', | |
prefix=opt.id, | |
# filename=f'{opt.id}_', | |
) | |
verbose = True | |
# import torch | |
# if torch.cuda.current_device() in [0, -1]: | |
if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0': | |
verbose = False | |
if verbose: | |
print(opt) | |
print(""" | |
val_image_use, | |
save_checkpoint_very | |
save_every_epoch, | |
save_history-ckpt will be ignored. | |
""") | |
# Lightning defines batch size as batch size per gpu | |
assert opt.batch_size % torch.cuda.device_count() == 0 | |
opt.batch_size = opt.batch_size // torch.cuda.device_count() | |
# If resume from last checkpoint | |
# if opt.start_from is not None and os.path.isfile(os.path.join(opt.start_from, f'{opt.id}_last.ckpt')): | |
# resume_from = os.path.join(opt.start_from, f'{opt.id}_last.ckpt') | |
if opt.start_from is not None: | |
resume_from = os.path.join(opt.start_from, f'{opt.id}-last.ckpt') | |
if os.path.isfile(resume_from): | |
if verbose: | |
print('Loading checkpoint from', resume_from) | |
else: | |
print("Checkpoint not found:", resume_from) | |
resume_from = None | |
else: | |
resume_from = None | |
from pytorch_lightning.loggers import WandbLogger | |
wandb_logger = WandbLogger( | |
project='CLIP-ViL-COCOCaption', | |
name=opt.id, | |
) | |
if verbose: | |
wandb_logger.experiment.config.update(opt) | |
from pathlib import Path | |
import glob | |
import wandb | |
# src_dir = Path(__file__).resolve().parent.parent | |
glob_str = "**/*.py" | |
base_path = './' | |
wandb.save(glob_str=glob_str, base_path=base_path) | |
# code = wandb.Artifact('project-source', type='code') | |
# for path in glob.glob('**/*.py', recursive=True): | |
# code.add_file(path, name='source/'+path) | |
# print(path) | |
# wandb.run.use_artifact(code) | |
lit = LitModel(opt) | |
# warning grad_clip_mode is ignored. | |
trainer = pl.Trainer( | |
callbacks=[ | |
OnEpochStartCallback(), | |
# pl.callbacks.lr_logger.LearningRateLogger() | |
pl.callbacks.LearningRateMonitor() | |
], | |
default_root_dir=opt.checkpoint_path, | |
resume_from_checkpoint=resume_from, | |
distributed_backend='ddp', | |
check_val_every_n_epoch=1, | |
max_epochs=opt.max_epochs, | |
gradient_clip_val=opt.grad_clip_value, | |
gpus=torch.cuda.device_count(), | |
checkpoint_callback=checkpoint_callback, | |
log_gpu_memory='min_max', | |
# log_save_interval=opt.losses_log_every, | |
log_every_n_steps=opt.losses_log_every, | |
profiler=True, | |
# profiler='simple', | |
# row_log_interval=10, # what is it? | |
flush_logs_every_n_steps=10, | |
num_sanity_val_steps=0, | |
# val_check_interval=0.01, | |
# limit_train_batches=500, | |
# progress_bar_refresh_rate=0, | |
# fast_dev_run=True, | |
precision=opt.precision, | |
logger=wandb_logger | |
) | |
if os.getenv('EVALUATE', '0') == '1': | |
trainer.test(lit) | |
else: | |
trainer.fit(lit) | |