import os import logging import numpy as np import spaces import torch from torch.nn import init def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) net.apply(init_func) # apply the initialization function def create_logger(name, log_file, level=logging.INFO): l = logging.getLogger(name) formatter = logging.Formatter('[%(asctime)s] %(message)s') fh = logging.FileHandler(log_file) fh.setFormatter(formatter) sh = logging.StreamHandler() sh.setFormatter(formatter) l.setLevel(level) l.addHandler(fh) l.addHandler(sh) return l class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, length=0): self.length = length self.reset() def reset(self): if self.length > 0: self.history = [] else: self.count = 0 self.sum = 0.0 self.val = 0.0 self.avg = 0.0 def update(self, val): if self.length > 0: self.history.append(val) if len(self.history) > self.length: del self.history[0] self.val = self.history[-1] self.avg = np.mean(self.history) else: self.val = val self.sum += val self.count += 1 self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdims=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def load_state(path, model, optimizer=None): def map_func(storage, location): return storage.cuda() if os.path.isfile(path): print("=> loading checkpoint '{}'".format(path)) # checkpoint = torch.load(path, map_location=map_func) checkpoint = torch.load(path) model.load_state_dict(checkpoint['state_dict'], strict=False) ckpt_keys = set(checkpoint['state_dict'].keys()) own_keys = set(model.state_dict().keys()) missing_keys = own_keys - ckpt_keys # print(ckpt_keys) # print(own_keys) for k in missing_keys: print('caution: missing keys from checkpoint {}: {}'.format(path, k)) last_iter = checkpoint['step'] if optimizer != None: optimizer.load_state_dict(checkpoint['optimizer']) print("=> also loaded optimizer from checkpoint '{}' (iter {})" .format(path, last_iter)) return last_iter else: print("=> no checkpoint found at '{}'".format(path))