Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from bisect import bisect_right | |
class _LRScheduler(object): | |
def __init__(self, optimizer, last_iter=-1): | |
if not isinstance(optimizer, torch.optim.Optimizer): | |
raise TypeError('{} is not an Optimizer'.format( | |
type(optimizer).__name__)) | |
self.optimizer = optimizer | |
if last_iter == -1: | |
for group in optimizer.param_groups: | |
group.setdefault('initial_lr', group['lr']) | |
else: | |
for i, group in enumerate(optimizer.param_groups): | |
if 'initial_lr' not in group: | |
raise KeyError("param 'initial_lr' is not specified " | |
"in param_groups[{}] when resuming an optimizer".format(i)) | |
self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups)) | |
self.last_iter = last_iter | |
def _get_new_lr(self): | |
raise NotImplementedError | |
def get_lr(self): | |
return list(map(lambda group: group['lr'], self.optimizer.param_groups)) | |
def step(self, this_iter=None): | |
if this_iter is None: | |
this_iter = self.last_iter + 1 | |
self.last_iter = this_iter | |
for param_group, lr in zip(self.optimizer.param_groups, self._get_new_lr()): | |
param_group['lr'] = lr | |
class _WarmUpLRSchedulerOld(_LRScheduler): | |
def __init__(self, optimizer, base_lr, warmup_lr, warmup_steps, last_iter=-1): | |
self.base_lr = base_lr | |
self.warmup_steps = warmup_steps | |
if warmup_steps == 0: | |
self.warmup_lr = base_lr | |
else: | |
self.warmup_lr = warmup_lr | |
super(_WarmUpLRSchedulerOld, self).__init__(optimizer, last_iter) | |
def _get_warmup_lr(self): | |
if self.warmup_steps > 0 and self.last_iter < self.warmup_steps: | |
# first compute relative scale for self.base_lr, then multiply to base_lr | |
scale = ((self.last_iter/self.warmup_steps)*(self.warmup_lr - self.base_lr) + self.base_lr)/self.base_lr | |
#print('last_iter: {}, warmup_lr: {}, base_lr: {}, scale: {}'.format(self.last_iter, self.warmup_lr, self.base_lr, scale)) | |
return [scale * base_lr for base_lr in self.base_lrs] | |
else: | |
return None | |
class _WarmUpLRScheduler(_LRScheduler): | |
def __init__(self, optimizer, base_lr, warmup_lr, warmup_steps, last_iter=-1): | |
self.base_lr = base_lr | |
self.warmup_lr = warmup_lr | |
self.warmup_steps = warmup_steps | |
assert isinstance(warmup_lr, list) | |
assert isinstance(warmup_steps, list) | |
assert len(warmup_lr) == len(warmup_steps) | |
super(_WarmUpLRScheduler, self).__init__(optimizer, last_iter) | |
def _get_warmup_lr(self): | |
pos = bisect_right(self.warmup_steps, self.last_iter) | |
if pos >= len(self.warmup_steps): | |
return None | |
else: | |
if pos == 0: | |
curr_lr = self.base_lr + self.last_iter * (self.warmup_lr[pos] - self.base_lr) / self.warmup_steps[pos] | |
else: | |
curr_lr = self.warmup_lr[pos - 1] + (self.last_iter - self.warmup_steps[pos - 1]) * (self.warmup_lr[pos] - self.warmup_lr[pos - 1]) / (self.warmup_steps[pos] - self.warmup_steps[pos - 1]) | |
scale = curr_lr / self.base_lr | |
return [scale * base_lr for base_lr in self.base_lrs] | |
class StepLRScheduler(_WarmUpLRScheduler): | |
def __init__(self, optimizer, milestones, lr_mults, base_lr, warmup_lr, warmup_steps, last_iter=-1): | |
super(StepLRScheduler, self).__init__(optimizer, base_lr, warmup_lr, warmup_steps, last_iter) | |
assert len(milestones) == len(lr_mults), "{} vs {}".format(milestones, lr_mults) | |
for x in milestones: | |
assert isinstance(x, int) | |
if not list(milestones) == sorted(milestones): | |
raise ValueError('Milestones should be a list of' | |
' increasing integers. Got {}', milestones) | |
self.milestones = milestones | |
self.lr_mults = [1.0] | |
for x in lr_mults: | |
self.lr_mults.append(self.lr_mults[-1]*x) | |
def _get_new_lr(self): | |
warmup_lrs = self._get_warmup_lr() | |
if warmup_lrs is not None: | |
return warmup_lrs | |
pos = bisect_right(self.milestones, self.last_iter) | |
if len(self.warmup_lr) == 0: | |
scale = self.lr_mults[pos] | |
else: | |
scale = self.warmup_lr[-1] * self.lr_mults[pos] / self.base_lr | |
return [base_lr * scale for base_lr in self.base_lrs] | |