Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/python | |
""" | |
# ============================== | |
# flowlib.py | |
# library for optical flow processing | |
# Author: Ruoteng Li | |
# Date: 6th Aug 2016 | |
# ============================== | |
""" | |
#import png | |
import numpy as np | |
from PIL import Image | |
import io | |
UNKNOWN_FLOW_THRESH = 1e7 | |
SMALLFLOW = 0.0 | |
LARGEFLOW = 1e8 | |
""" | |
============= | |
Flow Section | |
============= | |
""" | |
def write_flow(flow, filename): | |
""" | |
write optical flow in Middlebury .flo format | |
:param flow: optical flow map | |
:param filename: optical flow file path to be saved | |
:return: None | |
""" | |
f = open(filename, 'wb') | |
magic = np.array([202021.25], dtype=np.float32) | |
(height, width) = flow.shape[0:2] | |
w = np.array([width], dtype=np.int32) | |
h = np.array([height], dtype=np.int32) | |
magic.tofile(f) | |
w.tofile(f) | |
h.tofile(f) | |
flow.tofile(f) | |
f.close() | |
def save_flow_image(flow, image_file): | |
""" | |
save flow visualization into image file | |
:param flow: optical flow data | |
:param flow_fil | |
:return: None | |
""" | |
flow_img = flow_to_image(flow) | |
img_out = Image.fromarray(flow_img) | |
img_out.save(image_file) | |
def segment_flow(flow): | |
h = flow.shape[0] | |
w = flow.shape[1] | |
u = flow[:, :, 0] | |
v = flow[:, :, 1] | |
idx = ((abs(u) > LARGEFLOW) | (abs(v) > LARGEFLOW)) | |
idx2 = (abs(u) == SMALLFLOW) | |
class0 = (v == 0) & (u == 0) | |
u[idx2] = 0.00001 | |
tan_value = v / u | |
class1 = (tan_value < 1) & (tan_value >= 0) & (u > 0) & (v >= 0) | |
class2 = (tan_value >= 1) & (u >= 0) & (v >= 0) | |
class3 = (tan_value < -1) & (u <= 0) & (v >= 0) | |
class4 = (tan_value < 0) & (tan_value >= -1) & (u < 0) & (v >= 0) | |
class8 = (tan_value >= -1) & (tan_value < 0) & (u > 0) & (v <= 0) | |
class7 = (tan_value < -1) & (u >= 0) & (v <= 0) | |
class6 = (tan_value >= 1) & (u <= 0) & (v <= 0) | |
class5 = (tan_value >= 0) & (tan_value < 1) & (u < 0) & (v <= 0) | |
seg = np.zeros((h, w)) | |
seg[class1] = 1 | |
seg[class2] = 2 | |
seg[class3] = 3 | |
seg[class4] = 4 | |
seg[class5] = 5 | |
seg[class6] = 6 | |
seg[class7] = 7 | |
seg[class8] = 8 | |
seg[class0] = 0 | |
seg[idx] = 0 | |
return seg | |
def flow_to_image(flow): | |
""" | |
Convert flow into middlebury color code image | |
:param flow: optical flow map | |
:return: optical flow image in middlebury color | |
""" | |
u = flow[:, :, 0] | |
v = flow[:, :, 1] | |
maxu = -999. | |
maxv = -999. | |
minu = 999. | |
minv = 999. | |
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) | |
u[idxUnknow] = 0 | |
v[idxUnknow] = 0 | |
maxu = max(maxu, np.max(u)) | |
minu = min(minu, np.min(u)) | |
maxv = max(maxv, np.max(v)) | |
minv = min(minv, np.min(v)) | |
rad = np.sqrt(u ** 2 + v ** 2) | |
maxrad = max(5, np.max(rad)) | |
#maxrad = max(-1, 99) | |
u = u/(maxrad + np.finfo(float).eps) | |
v = v/(maxrad + np.finfo(float).eps) | |
img = compute_color(u, v) | |
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) | |
img[idx] = 0 | |
return np.uint8(img) | |
def disp_to_flowfile(disp, filename): | |
""" | |
Read KITTI disparity file in png format | |
:param disp: disparity matrix | |
:param filename: the flow file name to save | |
:return: None | |
""" | |
f = open(filename, 'wb') | |
magic = np.array([202021.25], dtype=np.float32) | |
(height, width) = disp.shape[0:2] | |
w = np.array([width], dtype=np.int32) | |
h = np.array([height], dtype=np.int32) | |
empty_map = np.zeros((height, width), dtype=np.float32) | |
data = np.dstack((disp, empty_map)) | |
magic.tofile(f) | |
w.tofile(f) | |
h.tofile(f) | |
data.tofile(f) | |
f.close() | |
def compute_color(u, v): | |
""" | |
compute optical flow color map | |
:param u: optical flow horizontal map | |
:param v: optical flow vertical map | |
:return: optical flow in color code | |
""" | |
[h, w] = u.shape | |
img = np.zeros([h, w, 3]) | |
nanIdx = np.isnan(u) | np.isnan(v) | |
u[nanIdx] = 0 | |
v[nanIdx] = 0 | |
colorwheel = make_color_wheel() | |
ncols = np.size(colorwheel, 0) | |
rad = np.sqrt(u**2+v**2) | |
a = np.arctan2(-v, -u) / np.pi | |
fk = (a+1) / 2 * (ncols - 1) + 1 | |
k0 = np.floor(fk).astype(int) | |
k1 = k0 + 1 | |
k1[k1 == ncols+1] = 1 | |
f = fk - k0 | |
for i in range(0, np.size(colorwheel,1)): | |
tmp = colorwheel[:, i] | |
col0 = tmp[k0-1] / 255 | |
col1 = tmp[k1-1] / 255 | |
col = (1-f) * col0 + f * col1 | |
idx = rad <= 1 | |
col[idx] = 1-rad[idx]*(1-col[idx]) | |
notidx = np.logical_not(idx) | |
col[notidx] *= 0.75 | |
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx))) | |
return img | |
def make_color_wheel(): | |
""" | |
Generate color wheel according Middlebury color code | |
:return: Color wheel | |
""" | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros([ncols, 3]) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY)) | |
col += RY | |
# YG | |
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG)) | |
colorwheel[col:col+YG, 1] = 255 | |
col += YG | |
# GC | |
colorwheel[col:col+GC, 1] = 255 | |
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC)) | |
col += GC | |
# CB | |
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB)) | |
colorwheel[col:col+CB, 2] = 255 | |
col += CB | |
# BM | |
colorwheel[col:col+BM, 2] = 255 | |
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM)) | |
col += + BM | |
# MR | |
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) | |
colorwheel[col:col+MR, 0] = 255 | |
return colorwheel | |
def read_flo_file(filename, memcached=False): | |
""" | |
Read from Middlebury .flo file | |
:param flow_file: name of the flow file | |
:return: optical flow data in matrix | |
""" | |
if memcached: | |
filename = io.BytesIO(filename) | |
f = open(filename, 'rb') | |
magic = np.fromfile(f, np.float32, count=1)[0] | |
data2d = None | |
if 202021.25 != magic: | |
print('Magic number incorrect. Invalid .flo file') | |
else: | |
w = np.fromfile(f, np.int32, count=1)[0] | |
h = np.fromfile(f, np.int32, count=1)[0] | |
data2d = np.fromfile(f, np.float32, count=2 * w * h) | |
# reshape data into 3D array (columns, rows, channels) | |
data2d = np.resize(data2d, (h, w, 2)) | |
f.close() | |
return data2d | |
# fast resample layer | |
def resample(img, sz): | |
""" | |
img: flow map to be resampled | |
sz: new flow map size. Must be [height,weight] | |
""" | |
original_image_size = img.shape | |
in_height = img.shape[0] | |
in_width = img.shape[1] | |
out_height = sz[0] | |
out_width = sz[1] | |
out_flow = np.zeros((out_height, out_width, 2)) | |
# find scale | |
height_scale = float(in_height) / float(out_height) | |
width_scale = float(in_width) / float(out_width) | |
[x,y] = np.meshgrid(range(out_width), range(out_height)) | |
xx = x * width_scale | |
yy = y * height_scale | |
x0 = np.floor(xx).astype(np.int32) | |
x1 = x0 + 1 | |
y0 = np.floor(yy).astype(np.int32) | |
y1 = y0 + 1 | |
x0 = np.clip(x0,0,in_width-1) | |
x1 = np.clip(x1,0,in_width-1) | |
y0 = np.clip(y0,0,in_height-1) | |
y1 = np.clip(y1,0,in_height-1) | |
Ia = img[y0,x0,:] | |
Ib = img[y1,x0,:] | |
Ic = img[y0,x1,:] | |
Id = img[y1,x1,:] | |
wa = (y1-yy) * (x1-xx) | |
wb = (yy-y0) * (x1-xx) | |
wc = (y1-yy) * (xx-x0) | |
wd = (yy-y0) * (xx-x0) | |
out_flow[:,:,0] = (Ia[:,:,0]*wa + Ib[:,:,0]*wb + Ic[:,:,0]*wc + Id[:,:,0]*wd) * out_width / in_width | |
out_flow[:,:,1] = (Ia[:,:,1]*wa + Ib[:,:,1]*wb + Ic[:,:,1]*wc + Id[:,:,1]*wd) * out_height / in_height | |
return out_flow | |