Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,881 Bytes
826d651 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from PIL import Image, ImageOps
import scipy.ndimage as ndimage
import cv2
import random
import numpy as np
from scipy.ndimage.filters import maximum_filter
from scipy import signal
cv2.ocl.setUseOpenCL(False)
def get_edge(data, blur=False):
if blur:
data = cv2.GaussianBlur(data, (3, 3), 1.)
sobel = np.array([[1,0,-1],[2,0,-2],[1,0,-1]]).astype(np.float32)
ch_edges = []
for k in range(data.shape[2]):
edgex = signal.convolve2d(data[:,:,k], sobel, boundary='symm', mode='same')
edgey = signal.convolve2d(data[:,:,k], sobel.T, boundary='symm', mode='same')
ch_edges.append(np.sqrt(edgex**2 + edgey**2))
return sum(ch_edges)
def get_max(score, bbox):
u = max(0, bbox[0])
d = min(score.shape[0], bbox[1])
l = max(0, bbox[2])
r = min(score.shape[1], bbox[3])
return score[u:d,l:r].max()
def nms(score, ks):
assert ks % 2 == 1
ret_score = score.copy()
maxpool = maximum_filter(score, footprint=np.ones((ks, ks)))
ret_score[score < maxpool] = 0.
return ret_score
def image_flow_crop(img1, img2, flow, crop_size, phase):
assert len(crop_size) == 2
pad_h = max(crop_size[0] - img1.height, 0)
pad_w = max(crop_size[1] - img1.width, 0)
pad_h_half = int(pad_h / 2)
pad_w_half = int(pad_w / 2)
if pad_h > 0 or pad_w > 0:
flow_expand = np.zeros((img1.height + pad_h, img1.width + pad_w, 2), dtype=np.float32)
flow_expand[pad_h_half:pad_h_half+img1.height, pad_w_half:pad_w_half+img1.width, :] = flow
flow = flow_expand
border = (pad_w_half, pad_h_half, pad_w - pad_w_half, pad_h - pad_h_half)
img1 = ImageOps.expand(img1, border=border, fill=(0,0,0))
img2 = ImageOps.expand(img2, border=border, fill=(0,0,0))
if phase == 'train':
hoff = int(np.random.rand() * (img1.height - crop_size[0]))
woff = int(np.random.rand() * (img1.width - crop_size[1]))
else:
hoff = (img1.height - crop_size[0]) // 2
woff = (img1.width - crop_size[1]) // 2
img1 = img1.crop((woff, hoff, woff+crop_size[1], hoff+crop_size[0]))
img2 = img2.crop((woff, hoff, woff+crop_size[1], hoff+crop_size[0]))
flow = flow[hoff:hoff+crop_size[0], woff:woff+crop_size[1], :]
offset = (hoff, woff)
return img1, img2, flow, offset
def image_crop(img, crop_size):
pad_h = max(crop_size[0] - img.height, 0)
pad_w = max(crop_size[1] - img.width, 0)
pad_h_half = int(pad_h / 2)
pad_w_half = int(pad_w / 2)
if pad_h > 0 or pad_w > 0:
border = (pad_w_half, pad_h_half, pad_w - pad_w_half, pad_h - pad_h_half)
img = ImageOps.expand(img, border=border, fill=(0,0,0))
hoff = (img.height - crop_size[0]) // 2
woff = (img.width - crop_size[1]) // 2
return img.crop((woff, hoff, woff+crop_size[1], hoff+crop_size[0])), (pad_w_half, pad_h_half)
def image_flow_resize(img1, img2, flow, short_size=None, long_size=None):
assert (short_size is None) ^ (long_size is None)
w, h = img1.width, img1.height
if short_size is not None:
if w < h:
neww = short_size
newh = int(short_size / float(w) * h)
else:
neww = int(short_size / float(h) * w)
newh = short_size
else:
if w < h:
neww = int(long_size / float(h) * w)
newh = long_size
else:
neww = long_size
newh = int(long_size / float(w) * h)
img1 = img1.resize((neww, newh), Image.BICUBIC)
img2 = img2.resize((neww, newh), Image.BICUBIC)
ratio = float(newh) / h
flow = cv2.resize(flow.copy(), (neww, newh), interpolation=cv2.INTER_LINEAR) * ratio
return img1, img2, flow, ratio
def image_resize(img, short_size=None, long_size=None):
assert (short_size is None) ^ (long_size is None)
w, h = img.width, img.height
if short_size is not None:
if w < h:
neww = short_size
newh = int(short_size / float(w) * h)
else:
neww = int(short_size / float(h) * w)
newh = short_size
else:
if w < h:
neww = int(long_size / float(h) * w)
newh = long_size
else:
neww = long_size
newh = int(long_size / float(w) * h)
img = img.resize((neww, newh), Image.BICUBIC)
return img, [w, h]
def image_pose_crop(img, posemap, crop_size, scale):
assert len(crop_size) == 2
assert crop_size[0] <= img.height
assert crop_size[1] <= img.width
hoff = (img.height - crop_size[0]) // 2
woff = (img.width - crop_size[1]) // 2
img = img.crop((woff, hoff, woff+crop_size[1], hoff+crop_size[0]))
posemap = posemap[hoff//scale:hoff//scale+crop_size[0]//scale, woff//scale:woff//scale+crop_size[1]//scale,:]
return img, posemap
def neighbor_elim(ph, pw, d):
valid = np.ones((len(ph))).astype(np.int)
h_dist = np.fabs(np.tile(ph[:,np.newaxis], [1,len(ph)]) - np.tile(ph.T[np.newaxis,:], [len(ph),1]))
w_dist = np.fabs(np.tile(pw[:,np.newaxis], [1,len(pw)]) - np.tile(pw.T[np.newaxis,:], [len(pw),1]))
idx1, idx2 = np.where((h_dist < d) & (w_dist < d))
for i,j in zip(idx1, idx2):
if valid[i] and valid[j] and i != j:
if np.random.rand() > 0.5:
valid[i] = 0
else:
valid[j] = 0
valid_idx = np.where(valid==1)
return ph[valid_idx], pw[valid_idx]
def remove_border(mask):
mask[0,:] = 0
mask[:,0] = 0
mask[mask.shape[0]-1,:] = 0
mask[:,mask.shape[1]-1] = 0
def flow_sampler(flow, strategy=['grid'], bg_ratio=1./6400, nms_ks=15, max_num_guide=-1, guidepoint=None):
assert bg_ratio >= 0 and bg_ratio <= 1, "sampling ratio must be in (0, 1]"
for s in strategy:
assert s in ['grid', 'uniform', 'gradnms', 'watershed', 'single', 'full', 'specified'], "No such strategy: {}".format(s)
h = flow.shape[0]
w = flow.shape[1]
ds = max(1, max(h, w) // 400) # reduce computation
if 'full' in strategy:
sparse = flow.copy()
mask = np.ones(flow.shape, dtype=np.int)
return sparse, mask
pts_h = []
pts_w = []
if 'grid' in strategy:
stride = int(np.sqrt(1./bg_ratio))
mesh_start_h = int((h - h // stride * stride) / 2)
mesh_start_w = int((w - w // stride * stride) / 2)
mesh = np.meshgrid(np.arange(mesh_start_h, h, stride), np.arange(mesh_start_w, w, stride))
pts_h.append(mesh[0].flat)
pts_w.append(mesh[1].flat)
if 'uniform' in strategy:
pts_h.append(np.random.randint(0, h, int(bg_ratio * h * w)))
pts_w.append(np.random.randint(0, w, int(bg_ratio * h * w)))
if "gradnms" in strategy:
ks = w // ds // 20
edge = get_edge(flow[::ds,::ds,:])
kernel = np.ones((ks, ks), dtype=np.float32) / (ks * ks)
subkernel = np.ones((ks//2, ks//2), dtype=np.float32) / (ks//2 * ks//2)
score = signal.convolve2d(edge, kernel, boundary='symm', mode='same')
subscore = signal.convolve2d(edge, subkernel, boundary='symm', mode='same')
score = score / score.max() - subscore / subscore.max()
nms_res = nms(score, nms_ks)
pth, ptw = np.where(nms_res > 0.1)
pts_h.append(pth * ds)
pts_w.append(ptw * ds)
if "watershed" in strategy:
edge = get_edge(flow[::ds,::ds,:])
edge /= max(edge.max(), 0.01)
edge = (edge > 0.1).astype(np.float32)
watershed = ndimage.distance_transform_edt(1-edge)
nms_res = nms(watershed, nms_ks)
remove_border(nms_res)
pth, ptw = np.where(nms_res > 0)
pth, ptw = neighbor_elim(pth, ptw, (nms_ks-1)/2)
pts_h.append(pth * ds)
pts_w.append(ptw * ds)
if "single" in strategy:
pth, ptw = np.where((flow[:,:,0] != 0) | (flow[:,:,1] != 0))
randidx = np.random.randint(len(pth))
pts_h.append(pth[randidx:randidx+1])
pts_w.append(ptw[randidx:randidx+1])
if 'specified' in strategy:
assert guidepoint is not None, "if using \"specified\", switch \"with_info\" on."
pts_h.append(guidepoint[:,1])
pts_w.append(guidepoint[:,0])
pts_h = np.concatenate(pts_h)
pts_w = np.concatenate(pts_w)
if max_num_guide == -1:
max_num_guide = np.inf
randsel = np.random.permutation(len(pts_h))[:len(pts_h)]
selidx = randsel[np.arange(min(max_num_guide, len(randsel)))]
pts_h = pts_h[selidx]
pts_w = pts_w[selidx]
sparse = np.zeros(flow.shape, dtype=flow.dtype)
mask = np.zeros(flow.shape, dtype=np.int)
sparse[:, :, 0][(pts_h, pts_w)] = flow[:, :, 0][(pts_h, pts_w)]
sparse[:, :, 1][(pts_h, pts_w)] = flow[:, :, 1][(pts_h, pts_w)]
mask[:,:,0][(pts_h, pts_w)] = 1
mask[:,:,1][(pts_h, pts_w)] = 1
return sparse, mask
def image_flow_aug(img1, img2, flow, flip_horizon=True):
if flip_horizon:
if random.random() < 0.5:
img1 = img1.transpose(Image.FLIP_LEFT_RIGHT)
img2 = img2.transpose(Image.FLIP_LEFT_RIGHT)
flow = flow[:,::-1,:].copy()
flow[:,:,0] = -flow[:,:,0]
return img1, img2, flow
def flow_aug(flow, reverse=True, scale=True, rotate=True):
if reverse:
if random.random() < 0.5:
flow = -flow
if scale:
rand_scale = random.uniform(0.5, 2.0)
flow = flow * rand_scale
if rotate and random.random() < 0.5:
lengh = np.sqrt(np.square(flow[:,:,0]) + np.square(flow[:,:,1]))
alpha = np.arctan(flow[:,:,1] / flow[:,:,0])
theta = random.uniform(0, np.pi*2)
flow[:,:,0] = lengh * np.cos(alpha + theta)
flow[:,:,1] = lengh * np.sin(alpha + theta)
return flow
def draw_gaussian(img, pt, sigma, type='Gaussian'):
# Check that any part of the gaussian is in-bounds
ul = [int(pt[0] - 3 * sigma), int(pt[1] - 3 * sigma)]
br = [int(pt[0] + 3 * sigma + 1), int(pt[1] + 3 * sigma + 1)]
if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or
br[0] < 0 or br[1] < 0):
# If not, just return the image as is
return img
# Generate gaussian
size = 6 * sigma + 1
x = np.arange(0, size, 1, float)
y = x[:, np.newaxis]
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
if type == 'Gaussian':
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
elif type == 'Cauchy':
g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5)
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], img.shape[1])
img_y = max(0, ul[1]), min(br[1], img.shape[0])
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return img
|