File size: 22,880 Bytes
826d651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union

import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class UNetSpatioTemporalConditionOutput(BaseOutput):
    """
    The output of [`UNetSpatioTemporalConditionModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor = None


class UNetSpatioTemporalConditionControlNetModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
    r"""
    A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample
    shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
            The tuple of downsample blocks to use.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        addition_time_embed_dim: (`int`, defaults to 256):
            Dimension to to encode the additional time ids.
        projection_class_embeddings_input_dim (`int`, defaults to 768):
            The dimension of the projection of encoded `added_time_ids`.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
        transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
            [`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
        num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
            The number of attention heads.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 8,
        out_channels: int = 4,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlockSpatioTemporal",
            "CrossAttnDownBlockSpatioTemporal",
            "CrossAttnDownBlockSpatioTemporal",
            "DownBlockSpatioTemporal",
        ),
        up_block_types: Tuple[str] = (
            "UpBlockSpatioTemporal",
            "CrossAttnUpBlockSpatioTemporal",
            "CrossAttnUpBlockSpatioTemporal",
            "CrossAttnUpBlockSpatioTemporal",
        ),
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        addition_time_embed_dim: int = 256,
        projection_class_embeddings_input_dim: int = 768,
        layers_per_block: Union[int, Tuple[int]] = 2,
        cross_attention_dim: Union[int, Tuple[int]] = 1024,
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20),
        num_frames: int = 25,
    ):
        super().__init__()

        self.sample_size = sample_size

        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )

        # input
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            padding=1,
        )

        # time
        time_embed_dim = block_out_channels[0] * 4

        self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

        self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0)
        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)

        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

        blocks_time_embed_dim = time_embed_dim

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block[i],
                transformer_layers_per_block=transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=blocks_time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=1e-5,
                cross_attention_dim=cross_attention_dim[i],
                num_attention_heads=num_attention_heads[i],
                resnet_act_fn="silu",
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlockSpatioTemporal(
            block_out_channels[-1],
            temb_channels=blocks_time_embed_dim,
            transformer_layers_per_block=transformer_layers_per_block[-1],
            cross_attention_dim=cross_attention_dim[-1],
            num_attention_heads=num_attention_heads[-1],
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))
        reversed_layers_per_block = list(reversed(layers_per_block))
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
        reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=reversed_layers_per_block[i] + 1,
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=blocks_time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=1e-5,
                resolution_idx=i,
                cross_attention_dim=reversed_cross_attention_dim[i],
                num_attention_heads=reversed_num_attention_heads[i],
                resnet_act_fn="silu",
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
        self.conv_act = nn.SiLU()

        self.conv_out = nn.Conv2d(
            block_out_channels[0],
            out_channels,
            kernel_size=3,
            padding=1,
        )

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(
            name: str,
            module: torch.nn.Module,
            processors: Dict[str, AttentionProcessor],
        ):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    # Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        return_dict: bool = True,
        added_time_ids: torch.Tensor=None,
    ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
        r"""
        The [`UNetSpatioTemporalConditionModel`] forward method.

        Args:
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
            added_time_ids: (`torch.FloatTensor`):
                The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
                embeddings and added to the time embeddings.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
                tuple.
        Returns:
            [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
        """
        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        batch_size, num_frames = sample.shape[:2]
        timesteps = timesteps.expand(batch_size)

        t_emb = self.time_proj(timesteps)

        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        emb = self.time_embedding(t_emb)

        time_embeds = self.add_time_proj(added_time_ids.flatten())
        time_embeds = time_embeds.reshape((batch_size, -1))
        time_embeds = time_embeds.to(emb.dtype)
        aug_emb = self.add_embedding(time_embeds)
        emb = emb + aug_emb

        # Flatten the batch and frames dimensions
        # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
        sample = sample.flatten(0, 1)
        # Repeat the embeddings num_video_frames times
        # emb: [batch, channels] -> [batch * frames, channels]
        emb = emb.repeat_interleave(num_frames, dim=0)
        # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
        encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)

        # 2. pre-process
        sample = self.conv_in(sample)

        image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)

        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                )
            else:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    image_only_indicator=image_only_indicator,
                )

            down_block_res_samples += res_samples

            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        
        # 4. mid
        sample = self.mid_block(
            hidden_states=sample,
            temb=emb,
            encoder_hidden_states=encoder_hidden_states,
            image_only_indicator=image_only_indicator,
        )
        sample = sample + mid_block_additional_residual


        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    image_only_indicator=image_only_indicator,
                )

        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        # 7. Reshape back to original shape
        sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])

        if not return_dict:
            return (sample,)

        return UNetSpatioTemporalConditionOutput(sample=sample)