File size: 8,359 Bytes
826d651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import subprocess
import numpy as np
import multiprocessing as mp
import math

import torch
import torch.distributed as dist
from torch.utils.data.sampler import Sampler
from torch.nn import Module

class DistModule(Module):
    def __init__(self, module):
        super(DistModule, self).__init__()
        self.module = module
        broadcast_params(self.module)
    def forward(self, *inputs, **kwargs):
        return self.module(*inputs, **kwargs)
    def train(self, mode=True):
        super(DistModule, self).train(mode)
        self.module.train(mode)

def average_gradients(model):
    """ average gradients """
    for param in model.parameters():
        if param.requires_grad:
            dist.all_reduce(param.grad.data)

def broadcast_params(model):
    """ broadcast model parameters """
    for p in model.state_dict().values():
        dist.broadcast(p, 0)

def dist_init(launcher, backend='nccl', **kwargs):
    if mp.get_start_method(allow_none=True) is None:
        mp.set_start_method('spawn')
    if launcher == 'pytorch':
        _init_dist_pytorch(backend, **kwargs)
    elif launcher == 'mpi':
        _init_dist_mpi(backend, **kwargs)
    elif launcher == 'slurm':
        _init_dist_slurm(backend, **kwargs)
    else:
        raise ValueError('Invalid launcher type: {}'.format(launcher))

def _init_dist_pytorch(backend, **kwargs):
    rank = int(os.environ['RANK'])
    num_gpus = torch.cuda.device_count()
    torch.cuda.set_device(rank % num_gpus)
    dist.init_process_group(backend=backend, **kwargs)

def _init_dist_mpi(backend, **kwargs):
    raise NotImplementedError

def _init_dist_slurm(backend, port=10086, **kwargs):
    proc_id = int(os.environ['SLURM_PROCID'])
    ntasks = int(os.environ['SLURM_NTASKS'])
    node_list = os.environ['SLURM_NODELIST']
    num_gpus = torch.cuda.device_count()
    torch.cuda.set_device(proc_id % num_gpus)
    addr = subprocess.getoutput(
        'scontrol show hostname {} | head -n1'.format(node_list))
    os.environ['MASTER_PORT'] = str(port)
    os.environ['MASTER_ADDR'] = addr
    os.environ['WORLD_SIZE'] = str(ntasks)
    os.environ['RANK'] = str(proc_id)
    dist.init_process_group(backend=backend)

def gather_tensors(input_array):
    world_size = dist.get_world_size()
    ## gather shapes first
    myshape = input_array.shape
    mycount = input_array.size
    shape_tensor = torch.Tensor(np.array(myshape)).cuda()
    all_shape = [torch.Tensor(np.array(myshape)).cuda() for i in range(world_size)]
    dist.all_gather(all_shape, shape_tensor)
    ## compute largest shapes
    all_shape = [x.cpu().numpy() for x in all_shape]
    all_count = [int(x.prod()) for x in all_shape]
    all_shape = [list(map(int, x)) for x in all_shape]
    max_count = max(all_count)
    ## padding tensors and gather them
    output_tensors = [torch.Tensor(max_count).cuda() for i in range(world_size)]
    padded_input_array = np.zeros(max_count)
    padded_input_array[:mycount] = input_array.reshape(-1)
    input_tensor = torch.Tensor(padded_input_array).cuda()
    dist.all_gather(output_tensors, input_tensor)
    ## unpadding gathered tensors
    padded_output = [x.cpu().numpy() for x in output_tensors]
    output = [x[:all_count[i]].reshape(all_shape[i]) for i,x in enumerate(padded_output)]
    return output

def gather_tensors_batch(input_array, part_size=10):
    # gather
    rank = dist.get_rank()
    all_features = []
    part_num = input_array.shape[0] // part_size + 1 if input_array.shape[0] % part_size != 0 else input_array.shape[0] // part_size
    for i in range(part_num):
        part_feat = input_array[i * part_size:min((i+1)*part_size, input_array.shape[0]),...]
        assert part_feat.shape[0] > 0, "rank: {}, length of part features should > 0".format(rank)
        print("rank: {}, gather part: {}/{}, length: {}".format(rank, i, part_num, len(part_feat)))
        gather_part_feat = gather_tensors(part_feat)
        all_features.append(gather_part_feat)
    print("rank: {}, gather done.".format(rank))
    all_features = np.concatenate([np.concatenate([all_features[i][j] for i in range(part_num)], axis=0) for j in range(len(all_features[0]))], axis=0)
    return all_features

def reduce_tensors(tensor):
    reduced_tensor = tensor.clone()
    dist.all_reduce(reduced_tensor)
    return reduced_tensor

class DistributedSequentialSampler(Sampler):
    def __init__(self, dataset, world_size=None, rank=None):
        if world_size == None:
            world_size = dist.get_world_size()
        if rank == None:
            rank = dist.get_rank()
        self.dataset = dataset
        self.world_size = world_size
        self.rank = rank
        assert len(self.dataset) >= self.world_size, '{} vs {}'.format(len(self.dataset), self.world_size)
        sub_num = int(math.ceil(len(self.dataset) * 1.0 / self.world_size))
        self.beg = sub_num * self.rank
        #self.end = min(self.beg+sub_num, len(self.dataset))
        self.end = self.beg + sub_num
        self.padded_ind = list(range(len(self.dataset))) + list(range(sub_num * self.world_size - len(self.dataset)))

    def __iter__(self):
        indices = [self.padded_ind[i] for i in range(self.beg, self.end)]
        return iter(indices)

    def __len__(self):
        return self.end - self.beg

class GivenIterationSampler(Sampler):
    def __init__(self, dataset, total_iter, batch_size, last_iter=-1):
        self.dataset = dataset
        self.total_iter = total_iter
        self.batch_size = batch_size
        self.last_iter = last_iter

        self.total_size = self.total_iter * self.batch_size
        self.indices = self.gen_new_list()
        self.call = 0

    def __iter__(self):
        if self.call == 0:
            self.call = 1
            return iter(self.indices[(self.last_iter + 1) * self.batch_size:])
        else:
            raise RuntimeError("this sampler is not designed to be called more than once!!")

    def gen_new_list(self):

        # each process shuffle all list with same seed, and pick one piece according to rank
        np.random.seed(0)

        all_size = self.total_size
        indices = np.arange(len(self.dataset))
        indices = indices[:all_size]
        num_repeat = (all_size-1) // indices.shape[0] + 1
        indices = np.tile(indices, num_repeat)
        indices = indices[:all_size]

        np.random.shuffle(indices)

        assert len(indices) == self.total_size

        return indices

    def __len__(self):
        return self.total_size


class DistributedGivenIterationSampler(Sampler):
    def __init__(self, dataset, total_iter, batch_size, world_size=None, rank=None, last_iter=-1):
        if world_size is None:
            world_size = dist.get_world_size()
        if rank is None:
            rank = dist.get_rank()
        assert rank < world_size
        self.dataset = dataset
        self.total_iter = total_iter
        self.batch_size = batch_size
        self.world_size = world_size
        self.rank = rank
        self.last_iter = last_iter

        self.total_size = self.total_iter*self.batch_size

        self.indices = self.gen_new_list()
        self.call = 0

    def __iter__(self):
        if self.call == 0:
            self.call = 1
            return iter(self.indices[(self.last_iter+1)*self.batch_size:])
        else:
            raise RuntimeError("this sampler is not designed to be called more than once!!")

    def gen_new_list(self):

        # each process shuffle all list with same seed, and pick one piece according to rank
        np.random.seed(0)

        all_size = self.total_size * self.world_size
        indices = np.arange(len(self.dataset))
        indices = indices[:all_size]
        num_repeat = (all_size-1) // indices.shape[0] + 1
        indices = np.tile(indices, num_repeat)
        indices = indices[:all_size]

        np.random.shuffle(indices)
        beg = self.total_size * self.rank
        indices = indices[beg:beg+self.total_size]

        assert len(indices) == self.total_size

        return indices

    def __len__(self):
        # note here we do not take last iter into consideration, since __len__
        # should only be used for displaying, the correct remaining size is
        # handled by dataloader
        #return self.total_size - (self.last_iter+1)*self.batch_size
        return self.total_size